Development of Spodoptera frugiperda fed on young maize plant’s fresh leaves inoculated with endophytic fungi from South Sumatra, Indonesia

YUWINDA AYU LESTARI1, MARIESKA VERAWATY1,2, SITI HERLINDA3,4,*

1Graduate Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia
2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Indralaya, Ogan Ilir 30662, South Sumatra, Indonesia
3Department of Plant Protection, Faculty of Agriculture, Universitas Sriwijaya, Jl. Palembang-Prabumulih, Inderalaya, Ogan Ilir 30662, South Sumatra, Indonesia
4Research Center for Sub-optimal Lands, Universitas Sriwijaya, Jl. Padang Selasa, Bukit Besar Ilir Barat I, Palembang 30139, South Sumatra, Indonesia

Abstract. Lestari YA, Verawaty M, Herlinda S. 2022. Development of Spodoptera frugiperda fed on young maize plant’s fresh leaves inoculated with endophytic fungi from South Sumatra, Indonesia. Biodiversitas 23: 5056-5063. The endophytic entomopathogenic fungi are needed to control the Spodoptera frugiperda larvae hiding inside the maize plants. This research aimed to assess the effect of young maize inoculated with endophytic fungi on the development of S. frugiperda. The fungal isolates used for the bioassay were Beauveria bassiana JgSPK isolate (GenBank acc. no. MZ356494), B. bassiana JgCrJr isolate (GenBank acc. no. MZ356497), and Metarhizium anisopliae CaTpPga isolates (GenBank acc. no. MZ240273). Beauveria bassiana (JgSPK and JgCrJr isolates) and M. anisopliae (CaTpPga isolate) colonized young maize plant significantly reduced the pupae and adult emergence, adult longevity, eggs laid, and viable eggs of S. frugiperda. The fungi also significantly enhanced larval mortality compared to non-colonized ones. The larval mortality caused by M. anisopliae CaTpPga isolate (57.67%) was highest among other treatments but not significantly different from those treated with B. bassiana JgSPK isolate (51.33%). Furthermore, the developmental time (eggs, larvae, pupae stages, and lifespan) of S. frugiperda fed on leaves colonized with endophytic fungi significantly increased compared to non-colonized ones. So, B. bassiana and M. anisopliae inoculated as seed treatments caused negative effects on the development of S. frugiperda. These findings highlight the potential of endophytic B. bassiana and M. anisopliae from South Sumatra to protect maize against S. frugiperda.

Keywords: Beauveria bassiana, entomopathogen, fall armyworm, Metarhizium anisopliae, seed treatment

INTRODUCTION

The Spodoptera frugiperda (Lepidoptera: Noctuidae) or fall armyworm (FAW) is an important pest species in the world, attacking a wide range of plants (polyphagous) and migrating all over the whole world (Montezano et al. 2018). This pest comes from South America (Otím et al. 2018). The FAW came into Africa in 2016 (Goergen et al. 2016) and crossed over to Europe in 2017 (Early et al. 2018). In Asia, the FAW was discovered for the first time in India in 2018 (Ganiger et al. 2018; Mahat et al. 2021), and on March 26, 2019, the pest came into Indonesia for the first time in West Sumatra (Sartiamo et al. 2020). More recently, it has spread throughout Indonesia (Maharani et al. 2019; Ginting et al. 2020; Supartha et al. 2021) and has become a new invasive pest in Indonesia (Herlinda et al. 2021b). As a polyphagous insect, the FAW can attack 353 host plant species from 76 plant families (Montezano et al. 2018). The percentage of infested maize fields by FAW in East Africa ranges from 80% to 100% in Ethiopia and 82.2% to 100% in Kenya (Sisay et al. 2019). It causes about a third of the annual maize production losses, about 1 million tonnes in Kenya (De Groote et al. 2020) and 18 million tons/year in 12 African countries. The losses reach US $13 million (Harrison et al. 2019). The most severely attacked crop in Indonesia is maize (Zea mays). It causes damage ranging from 85% to 100% in East Nusa Tenggara (Mukkun et al. 2021) and 26.50% to 70% in Lampung (Lestari et al. 2020), and reaching 100% in South Sumatra (Herlinda et al. 2021b). The larval stage of this pest eats leaves, stems, flowers, fruits, and growing points (Montezano et al. 2018). The larvae are found on the surface of maize leaves or stalks in the morning and then hide in the leaf's midribs at daylight (Gustianingtyas et al. 2021), and this behavior makes the FAW larvae difficult to be controlled.

The FAW is commonly controlled using synthetic insecticides due to its fast action and easy application (Kumela et al. 2018). Still, the insecticide application has a negative effect on human health and the environment (Harrison et al. 2019) and the resistance against the pest (Zhang et al. 2021). An alternative eco-friendly control for FAW is utilizing biocontrol agents, such as entomopathogenic fungi (Mantzoukas and Eliopoulos 2020). Our previous study showed that Metarhizium spp. treated by topical application caused 78% mortality of the larval S. frugiperda (Herlinda et al. 2020). Beauveria bassiana applied topically could kill more than 80% of the FAW larvae (Ramanujam et al. 2020). However, the topical fungal application is less effective in the field.
(Gustianingtyas et al. 2021) because from daylight up tonight, the FAW larvae hide in the corn midribs (Herlinda et al. 2021a). To control the hiding larvae, the entomopathogenic fungi can colonize the plant tissues (endophytic fungi) (Gustianingtyas et al. 2021). The endophytic fungi colonize the intercellular or intracellular spaces of host tissues and provide beneficial effects to their hosts (Lira et al. 2020), can stimulate plant growth, and depress insect growth (Russo et al. 2020).

The previous study showed that the endophytic fungi from South Sumatra (Indonesia) could kill S. frugiperda larvae (Herlinda et al. 2021a). However, there is no information on the development of S. frugiperda fed on young maize inoculated with endophytic fungi. So, the potential of the fungi isolated from plant tissues as endophytic entomopathogens needs to be evaluated. Therefore, this study investigated the effect of young maize plants inoculated with endophytic fungi on S. frugiperda development. So, this research aimed to assess the effect of young maize plants inoculated with endophytic fungi on the development of S. frugiperda.

MATERIALS AND METHODS

Mass-rearing of Spodoptera frugiperda

S. frugiperda eggs were obtained from the Laboratory of Entomology, Department of Plant Protection, Faculty of Agriculture, Universitas Sriwijaya, which have been mass-reared since January 2020 (Herlinda et al. 2020) and were identified molecularly (Herlinda et al. 2021b). The FAW was mass-reared in the laboratory at 29°C temperature and 83% relative humidity (RH), and the lighting was set to photoperiod 12:12 (L:D) h. The larvae were maintained individually because the third up to the last instars are cannibal (Herlinda et al. 2021a). The larvae were fed on the fresh corn leaves. The pupae were replaced in a transparent plastic cage (50x50x50 cm³) containing more than 100 pupae per cage, and inside the cage also placed fresh corn leaves for the adults laying their eggs. The newly emerged larvae were used for bioassays as described below.

Assessing endophytic fungal colonization in the young maize tissue

The fungal isolates used for this bioassay were from the Laboratory of Entomology collection and were identified molecularly by Herlinda et al. (2021a). The fungal species were B. bassiana JgSPK isolate (GenBank acc. no. MZ356494), B. bassiana JgCrJr isolate (GeneBank acc. no. MZ356497), and M. anisopliae CaTpPga isolates (GeneBank acc. no. MZ242073) (Table 1). The fungi originated from Simpang Padang Karet. Pagar Alam, South Sumatra (103°15’30.1788” E, 4°1’28.0308” S), Curup Jare, Pagar Alam, South Sumatra (103°13’17.0904” E, 4°0’58.7556” S), and Tanjung Payang, Pagar Alam, South Sumatra (103°14’28.0644” E, 4°22’20.8752” S), respectively.

To ensure the fungi used in this study were truly endophytic, the fungi’s ability to colonize maize tissue was assessed by treating the maize seeds. The fungi were cultured on sabouraud dextrose agar (SDA) medium and incubated for 14 days. Before being treated with the fungi, the 45 corn seeds were surface sterilized using Russo et al. (2020) method. Then, the seeds were submerged in 10 mL of fungal suspension (1x10⁷ conidia mL⁻¹) for 24 hours, whereas the control or untreated seeds were only immersed with 10 mL of sterilized water. After that, the seeds were grown in the hydroponic medium using the method of Novianti et al. (2020). To confirm the fungi as endophytes, detecting the fungi colonizing the young maize tissues was done by cutting the tip leaves of 7 and 14-day-old young maize. Then the tip leaves were grown onto the SDA medium to detect the mycelia of the endophytic fungi within the leaves. Finally, the rest young maize leaves were used for bioassays. Before the leaves colonized with the fungi grew onto the SDA medium, they were first surface-sterilized by immersion in 70% ethanol and sodium hypochlorite for 2 minutes and rinsed twice in sterile distilled water (Russo et al. 2020). Finally, the last rinse water was also grown onto the SDA medium. If no fungal growth was found on the last rinse water, it confirmed that the surface sterilization of maize tissues eliminated the epiphytic microorganisms, and the fungus growing on the treated medium were endophytes.

The bioassay to assess the effect of young maize inoculated with endophytic fungi on Spodoptera frugiperda development

Assessing the effect of young maize inoculated with endophytic fungi on the development of S. frugiperda was conducted at the Laboratory of Entomology, Department of Plant Protection, Faculty of Agriculture, Universitas Sriwijaya. The laboratory temperature and RH ranged from 28-29°C and 82-83%, respectively.

The bioassay for assessing the effect of young maize colonized with endophytic fungi (after seed treatment) on the development of S. frugiperda followed the method of Russo et al. (2019). The fresh leaves of young maize colonized by the endophytic fungi were provided to the first instar neonate larvae (hatching within 24 hours) of S. frugiperda as feed, whereas, for control, the non-treated leaves of young maize were provided as feed by the larvae.

<table>
<thead>
<tr>
<th>Location (village, district/city)</th>
<th>Isolate origin</th>
<th>Fungal species</th>
<th>Fungal isolate code</th>
<th>GenBank Acc. No.</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simpang Padang Karet. Pagar Alam</td>
<td>Maize</td>
<td>Beauveria bassiana</td>
<td>JgSPK</td>
<td>MZ356494</td>
<td>Herlinda et al. (2021a)</td>
</tr>
<tr>
<td>Curup Jare. Pagar Alam</td>
<td>Maize</td>
<td>Beauveria bassiana</td>
<td>JgCrJr</td>
<td>MZ356497</td>
<td>Herlinda et al. (2021a)</td>
</tr>
<tr>
<td>Tanjung Payang. Pagar Alam</td>
<td>Red pepper</td>
<td>Metarhizium anisopliae</td>
<td>CaTpPga</td>
<td>MZ242073</td>
<td>Herlinda et al. (2021a)</td>
</tr>
</tbody>
</table>
The 100 neonate larvae for each isolate were provided with treated young maize and untreated ones (control) for 6-12 hours or until the leaves were eaten. After that, the larvae were individually maintained in a porous plastic cup (Ø 6.5 cm), fed on fresh non-treated leaves (2 cm x 5 cm) per day per larva, and replaced with new ones every day. This experiment consisted of three fungal isolates, and the control (water) was repeated three times using a completely randomized block design.

The variables recorded were the egg, larval, pupal, and adult developmental times and the mortality of each stage. The mortality of larvae and pupae was recorded every day. The morphology of the dead egg (unhatched), larvae, and pupae and the behavior of unhealthy larvae were recorded daily. The unhatched eggs, dead larvae, and pupae were grown in an SDA medium to confirm the microorganism that infected them. The adults emerging were monitored daily, and their sex was recorded. The Spodoptera frugiperda adults were placed in the wire mesh cage for copulation with fresh maize leaves to provide egg laying. Eggs laid by the adults were counted every day. Adult longevity was determined by counting the time (days) from emergence until death.

Data analysis

The differences in the egg, larval, pupal, and adult developmental times and the mortality of each stage, the adult longevity, the eggs laid, and the sex ratio of each isolate were analyzed using analysis of variance (ANOVA). Tukey's or Tukey's Honestly Significant Difference (HSD) test was applied to determine the significant differences among means of the isolates at p: 0.05. All data were calculated using the software of SAS University Edition 2.7 9.4 M5.

RESULTS AND DISCUSSION

The results of assessing endophytic fungal colonization in the young maize tissue

All fungal isolates (B. bassiana JgSPK and JgCrJr isolates, and M. anisopliae CaTpPga isolate) used in this study were endophytic fungi because the fungal mycelia were able to colonize within young maize tissue after being inoculated by seed immersion treatment. The fungi colonized the young maize leaves when they were grown onto the SDA medium, the fungus grew, and their mycelia covered the leaves. However, no mycelia were found on untreated maize leaves and in the final flushing water. This confirmed that the surface-sterilization of maize tissues eradicated the epiphytic microorganisms so that the fungus growing out of the leaf surface were endophytes originating from the maize tissues. The results showed that the percentage of fungal colonization in leaves after being inoculated by seed immersion treatment increased from 7 to 14 days after seed inoculation. After 14 days after seed inoculation, all maize leaves were colonized by the fungi (100%) (Table 2). The percentage of fungal colonization was determined or calculated as the number of sampled

leave tissue showing fungal outgrowth divided by the total number of plated leave tissue samples x 100.

Effect of the colonized fresh leaf of young maize on Spodoptera frugiperda development

The first instar neonate larvae fed on fungal colonized maize leaf caused the next instar significantly shift their developmental time (P<0.0001) (Table 3). The developmental time of all instars fed on the treated maize was longer than those fed on the untreated ones (control). The treated maize colonized by the fungi also increased egg, prepupa, and pupal developmental time; however, the longevity of female and male adults decreased significantly (P<0.0001) (Table 4). Fungal colonized maize caused the total lifespan of S. frugiperda to increase significantly (P<0.0001). Longevity is the age of an adult but lifespan is the length of time from the egg stage up to adult death. The longest total lifespan or generation time of S. frugiperda was found in M. anisopliae (46.87 days), among other treatments. The lifespan of S. frugiperda caused by feeding on the fungal colonized maize leaves was significantly longer (P<0.0001) than those fed on non-colonized maize leaves.

Larval mortality of all instar fed on the fungal treatment leaves was significantly higher (P<0.0001) than those of larvae fed on untreated maize leaves (control) (Table 5). The mortality of the last larval instar fed on young maize leaves colonized by M. anisopliae (57.67%) was the highest among other treatments. Still, it was not significantly different from those fed on maize leaves colonized by B. bassiana of JgSPK isolate (51.33%). The mean percentage of pupae and adults’ emergence of fungal treatments was significantly lower (P<0.0001) than those of the control (Table 6). The percentage of pupae and adults’ emergence of M. anisopliae treatment was the lowest among other treatments. The sex ratio of S. frugiperda fed on maize leaves colonized with the fungi was not significantly different from those of the control. However, the maize leaves colonized with fungi significantly decreased the number of eggs laid and viable eggs of S. frugiperda compared to the non-colonized one.

Table 2. The effect of endophytic-entomopathogenic fungal isolates on mean maize leaf colonization (%) at 7 and 14 days after inoculation

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Species</th>
<th>Mean fungal colonization on maize leaves (%)</th>
<th>Seven days after inoculation</th>
<th>Fourteen days after inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>0.000</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>JgSPK</td>
<td>Beauveria bassiana</td>
<td>73.33b</td>
<td>100.00a</td>
<td>100.00a</td>
</tr>
<tr>
<td>JgCrJr</td>
<td>Beauveria bassiana</td>
<td>53.33b</td>
<td>100.00a</td>
<td>100.00a</td>
</tr>
<tr>
<td>CaTpPga</td>
<td>Metarhizium anisopliae</td>
<td>100.00a</td>
<td>100.00a</td>
<td>100.00a</td>
</tr>
</tbody>
</table>

F-value: 145.02, P-value: 4.88×10^-6, HSD value: 5.78

Note: *: significantly different; values within a column followed by the same letters were not significantly different at P<0.05 according to Tukey's HSD test
Table 3. The developmental time of instar larvae of *Spodoptera frugiperda* fed on young maize leaves treated with *Beauveria bassiana* of JgSPK and JgCrJr isolates, and *Metarhizium anisopliae* CaTpPga isolate

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Species</th>
<th>1st larvae</th>
<th>2nd larvae</th>
<th>3rd larvae</th>
<th>4th larvae</th>
<th>5th larvae</th>
<th>6th larvae</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>3.12d</td>
<td>3.02d</td>
<td>2.99d</td>
<td>2.99c</td>
<td>2.99d</td>
<td>3.01d</td>
</tr>
<tr>
<td>JgSPK</td>
<td>Beauveria bassiana</td>
<td>4.55b</td>
<td>4.48b</td>
<td>4.41b</td>
<td>4.33b</td>
<td>4.28b</td>
<td>4.49b</td>
</tr>
<tr>
<td>JgCrJr</td>
<td>Beauveria bassiana</td>
<td>4.18c</td>
<td>4.09c</td>
<td>4.12c</td>
<td>4.22b</td>
<td>4.16c</td>
<td>4.16c</td>
</tr>
<tr>
<td>CaTpPga</td>
<td>Metarhizium anisopliae</td>
<td>4.87a</td>
<td>4.96a</td>
<td>5.01a</td>
<td>4.05a</td>
<td>4.93a</td>
<td>4.81a</td>
</tr>
</tbody>
</table>

F-value
719.41*
P-value
4.66x10^-08
HSD value
0.03

Note: *: significantly different; values within a column followed by the same letters were not significantly different at P<0.05 according to Tukey’s HSD test

Table 4. Length of *Spodoptera frugiperda* fed on young maize leaves treated with *Beauveria bassiana* of JgSPK and JgCrJr isolates and *Metarhizium anisopliae* CaTpPga isolate

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Species</th>
<th>Prepupae</th>
<th>Pupae</th>
<th>Female adult</th>
<th>Male adult</th>
<th>Egg</th>
<th>Total lifespan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>3.11d</td>
<td>6.15d</td>
<td>4.46a</td>
<td>4.52a</td>
<td>3.14c</td>
<td>31.90d</td>
</tr>
<tr>
<td>JgSPK</td>
<td>Beauveria bassiana</td>
<td>4.33b</td>
<td>8.00b</td>
<td>3.42bc</td>
<td>3.51c</td>
<td>3.60b</td>
<td>42.37b</td>
</tr>
<tr>
<td>JgCrJr</td>
<td>Beauveria bassiana</td>
<td>4.06c</td>
<td>7.21c</td>
<td>3.57bc</td>
<td>3.69b</td>
<td>3.47b</td>
<td>39.90c</td>
</tr>
<tr>
<td>CaTpPga</td>
<td>Metarhizium anisopliae</td>
<td>4.95a</td>
<td>9.05a</td>
<td>3.25c</td>
<td>3.35d</td>
<td>3.94a</td>
<td>46.87a</td>
</tr>
</tbody>
</table>

F-value
862.15*
P-value
2.71x10^-06
HSD value
0.03

Note: *: significantly different; values within a column followed by the same letters were not significantly different at P<0.05 according to Tukey’s HSD test

Table 5. The cumulative mortality of different larval instars of *Spodoptera frugiperda* fed on young maize leaves treated with *Beauveria bassiana* of JgSPK and JgCrJr isolates, and *Metarhizium anisopliae* CaTpPga isolate

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Species</th>
<th>1st larva</th>
<th>2nd larva</th>
<th>3rd larva</th>
<th>4th larva</th>
<th>5th larva</th>
<th>6th larva</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>3.00</td>
<td>7.00c</td>
<td>7.67c</td>
<td>7.67d</td>
<td>7.67c</td>
<td>7.67c</td>
</tr>
<tr>
<td>JgSPK</td>
<td>Beauveria bassiana</td>
<td>6.67</td>
<td>29.33a</td>
<td>37.67ab</td>
<td>47.00b</td>
<td>49.67ab</td>
<td>51.33ab</td>
</tr>
<tr>
<td>JgCrJr</td>
<td>Beauveria bassiana</td>
<td>4.00</td>
<td>14.33b</td>
<td>32.67b</td>
<td>39.67c</td>
<td>42.00b</td>
<td>43.67b</td>
</tr>
<tr>
<td>CaTpPga</td>
<td>Metarhizium anisopliae</td>
<td>5.33</td>
<td>29.67a</td>
<td>43.33a</td>
<td>54.00a</td>
<td>57.33a</td>
<td>57.67a</td>
</tr>
</tbody>
</table>

F-value
1.85ns
P-value
0.24
HSD value
-

Note: ns: not significantly different; *: significantly different; values within a column followed by the same letters were not significantly different at P<0.05 according to Tukey’s HSD test. Original data were transformed using Arcsin transformation prior to statistical analysis

Table 6. Mean percentage of pupae and adult emergence, sex ratio, an egg laid, and viable eggs of *Spodoptera frugiperda* fed on young maize treated with *Beauveria bassiana* of JgSPK and JgCrJr isolates, and *Metarhizium anisopliae* CaTpPga isolate

<table>
<thead>
<tr>
<th>Isolates</th>
<th>Fungal species</th>
<th>Pupae emergence (%)</th>
<th>Adult emergence (%)</th>
<th>Sex ratio</th>
<th>Eggs laid per female</th>
<th>Viable (hatched) eggs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>92.67a</td>
<td>92.67a</td>
<td>0.60</td>
<td>34.04a</td>
<td>98.85a</td>
</tr>
<tr>
<td>JgSPK</td>
<td>Beauveria bassiana</td>
<td>37.67c</td>
<td>33.33c</td>
<td>0.71</td>
<td>17.30b</td>
<td>83.42b</td>
</tr>
<tr>
<td>JgCrJr</td>
<td>Beauveria bassiana</td>
<td>47.67b</td>
<td>44.67b</td>
<td>0.72</td>
<td>15.33b</td>
<td>85.49b</td>
</tr>
<tr>
<td>CaTpPga</td>
<td>Metarhizium anisopliae</td>
<td>29.00d</td>
<td>23.67d</td>
<td>0.70</td>
<td>11.25b</td>
<td>81.65b</td>
</tr>
</tbody>
</table>

F-value
355.81*
P-value
3.81x10^-07
HSD value
4.86

Note: ns: not significantly different *: significantly different; values within a column followed by the same letters were not significantly different at P<0.05 according to Tukey’s HSD test. Original data pupae and adult emergence were transformed using Arcsin transformation before statistical analysis
Mycosis of each stage (larvae, pupae, and adult) of *Spodoptera frugiperda*

The FAW larvae fed on the fungal colonized maize leaves underwent behavior and color change, such as no appetite and muddy body color. The dead larvae showed unique symptoms, specifically shrunken and hardened like a mummy; the larvae body was covered with fungal mycelia and became white or green, depending on the fungal species that infected and killed them. The larvae fed on leaves colonized by *B. bassiana* and *M. anisopliae* produced the cadavers with white and green colors, respectively (Figure 1). The result indicated that the fungal isolate from the re-isolation of the cadavers was the same as the fungal isolate used for maize seed treatment. The colony morphology of the fungi resulted from re-isolation from the cadavers with white and greenish white for *B. bassiana* and *M. anisopliae*, respectively (Figure 2). The conidial and hyphal morphology of *B. bassiana* produced from the cadavers had hyaline hyphae, mycelia, and globose conidia. Nevertheless, the morphology of *M. anisopliae* had green hyphae and mycelia, and cylindrical conidia. Therefore, the dead larvae or other stages of *S. frugiperda* that produced fungal conidia and hyphae were considered to have died from mycosis.

The fungi that colonized the maize leaves could produce mycosis at each stage of *S. frugiperda*, but also they could cause the *S. frugiperda* could cause malformation (Figures 3, 4, and 5). The sick larvae caused by consuming the fungal colonized maize leaves underwent body shrinkage and dark brown, and their integuments were harder than the healthy ones. The sick larvae could produce abnormal and malformed pupae. The sick pupae infected by fungi could produce abnormal and malformed adults with smaller bodies, deformed and folded wings, and an inability to fly.

![Figure 1](image1.png)

Figure 1. The cadavers from larvae fed on maize leaf untreated with fungi or control (A), and the cadavers from larvae fed on maize leaf colonized by *Beauveria bassiana* of JgSPK isolate, and JgCrJr isolate (B and C), *Metarhizium anisopliae* CaTpPga isolate (D) incubated for 14 days

![Figure 2](image2.png)

Figure 2. Colony morphology of endophytic fungi isolated from the cadavers and cultured on SDA media for 14 days (above) and the conidial and hyphal morphology (below) of the fungi: *Beauveria bassiana* of JgSPK isolate (A and D), and JgCrJr isolate (B and E), *Metarhizium anisopliae* CaTpPga isolate (C and F)
The three fungal isolates used in the current study were confirmed as endophytic fungi. The obtained finding showed that the fungal mycelia could colonize the maize tissue, including the leaves consumed by the neonate larvae. The fungal mycelia were not found within the uninoculated maize leaves (control). In the current study, the ability of *B. bassiana* and *M. anisopliae* to colonize the young maize through seed treatment reached 100% of leaves 14 days after seed inoculation. The fungi, *B. bassiana*, and *M. anisopliae*, were also able to colonize the maize when inoculated by foliar spray and root dipping, and at seven days after foliar spray, the fungi could colonize 100% of leaves, 80% of stems, and 60% of roots (Russo et al. 2020). The fungal endophytes could colonize after more than 14 days; the fungi were found within the roots, stems, and leaves of tomatoes up to 30 days after inoculation (Carolina et al. 2020). *Beauveria bassiana* could be detected within the entire plant growth cycle (120-140 days after sowing), and it was also detected in seeds of opium poppy plants (*Papaver somniferum*) (Quesada-Moraga et al. 2014). In the present study, *B. bassiana* and *M. anisopliae* isolates could be detected within the entire maize tissue. This finding showed that *B. bassiana* and *M. anisopliae* isolates from South Sumatra could cause high mortality of the larvae fed on the colonized young maize leaves. Because the young maize is highly susceptible to *S. frugiperda* larvae (Suparth et al. 2021), the early prevention with seed treatment by using the endophytic *B. bassiana* and *M. anisopliae* may increase the young corn plant’s defense against *S. frugiperda* larvae. Moreover, the hiding larvae of *S. frugiperda* in the corn midribs were more effectively controlled by using the endophytic fungi than the topical fungal application (Gustianingtyas et al. 2021; Herlinda et al. 2021a).

In the present study, *B. bassiana* and *M. anisopliae* inoculated as maize seed treatments prolonged the developmental time of *S. frugiperda*. The developmental time (eggs, larvae, and pupae stages and lifespan) of *S. frugiperda* fed on leaves colonized with endophytic fungi increased; however, the adult longevity decreased. Those findings follow some previous findings that the fungi enhanced the developmental time of insects (Hussain et al. 2009; Lopez and Sword 2015) because the fungi reduced the conversion of digested and ingested food, which could stimulate the larvae to develop more slowly (Hussain et al. 2009).

Beauveria bassiana and *M. anisopliae* inoculated as seed treatments in the current study caused negative effects on the development of *S. frugiperda*. The fungi could reduce the pupae and adult emergence, eggs laid, and viable eggs and enhance larval mortality. *Beauveria bassiana* and *M. anisopliae* in seed immersion, foliar spray, and root dipping caused adverse effects on *S. frugiperda* development and survival (Russo et al. 2020) due to the fungi producing secondary metabolites. The secondary metabolites caused mycosis in the insect body (Vidal and Jaber 2015). In addition, the fungal mycelia within the plant tissue fed on the larvae could produce blastospores in the larvae’s hemolymph. The blastospores could produce secondary metabolites with toxins that disrupt the normal cell metabolism and kill the insects (Mancillas-Paredes et al. 2019). The endophytic fungi also reduced the larvae’s appetite for consuming the plant leaves and increased the larval mortality (Gustianingtyas et al. 2021) because the fungi could produce secondary metabolites in planta resulting in antifeedant or deterrent and antibiotics for the larvae of *S. frugiperda* (Jaber and Ownley 2018) and also could increase the levels of terpenoid defense compounds against *S. frugiperda* (Russo et al. 2020). When the insects died, the endophytic fungi kept growing and caused mycosis characterized by fungal mycelia and spores emerging from the cadaver body (Vidal and Jaber 2015). The current study showed that the mycosis occurred on the
larvae of *S. frugiperda* fed on the leaves colonized by the fungi, and no mycosis was found on the untreated larvae (control). The previous study also showed that mycosis could occur in the *S. frugiperda* larvae fed on fungal-endophytically colonized plants (Russo et al. 2020).

Finally, *B. bassiana* (JgSPK and JgCrIr isolates) and *M. anisopliae* (CaTpPga isolate) colonized young maize fed on the neonate larvae significantly reduced the pupae and adult emergence, adult longevity, eggs laid, and viable eggs, and also significantly enhanced the larval mortality compared to non-colonized ones. The larval mortality caused by *M. anisopliae* CaTpPga isolate was highest among other treatments but not significantly different from those treated with *B. bassiana* JgSPK isolate. The developmental time (eggs, larvae, and pupae stages) of *S. frugiperda* fed on leaves colonized with endophytic fungi significantly increased compared to non-colonized ones. So, *B. bassiana* and *M. anisopliae* inoculated as seed treatments caused negative effects on the development of *S. frugiperda*. These findings highlight the potential of endophytic *B. bassiana* and *M. anisopliae* from South Sumatra to protect maize against *S. frugiperda*.

ACKNOWLEDGEMENTS

This research was funded by the DIPA of Universitas Sriwijaya 2021, contract number: SP DIPA-023.17.2.677515/2021, November 23th, 2020, in line with Rector’s Decree Number: 0014/UN9/SK.LP2M.PT/2021, May 25th, 2021, chaired by Siti Herlinda. We thank the Rector of Universitas Sriwijaya for funding this research.

REFERENCES

Lopez DC, Sword GA. 2015. The endophytic fungal entomopathogens *Beauveria bassiana* and *Parasukevillium bliaucum* enhance the growth of cultivated cotton (*Gossypium hirsutum*) and negatively affect survival of the cotton bollworm (*Helicoverpa zea*). Bio Control 89: 53-60. DOI: 10.1016/biocontrol.2015.03.010.

