BIODIVERSITAS Volume 23, Number 10, October 2022 Pages: 4959-4970

Ethnobotanical study of wild medicinal plants in Serbajadi protected forest of East Aceh District, Indonesia

ZIDNI ILMAN NAVIA^{1,*}, ADNAN², TISNA HARMAWAN³, ADI BEJO SUWARDI⁴

¹Department of Biology, Faculty of Engineering, Universitas Samudra. Jl. Prof. Dr. Syarief Thayeb, Langsa 24416, Aceh, Indonesia.

•email: navia@unsam.ac.id

²Department of Chemistry, Faculty of Engineering, Universitas Samudra. Jl. Prof. Dr. Syarief Thayeb, Langsa 24416, Aceh, Indonesia

³Department of Agrotechnology, Faculty of Agriculture, Universitas Samudra. Jl. Prof. Dr. Syarief Thayeb, Langsa 24416, Aceh, Indonesia ⁴Department of Biology Education, Faculty of Teacher Training and Education, Universitas Samudra. Jl. Prof. Dr. Syarief Thayeb, Langsa 24416, Aceh,

Indonesia

Manuscript received: 26 July 2022. Revision accepted: 17 September 2022.

Abstract. *Navia ZI, Adnan, Harmawan T, Suwardi AB.* 2022. *Ethnobotanical study of wild medicinal plants in Serbajadi protected forest of East Aceh District, Indonesia. Biodiversitas* 23: 4959-4970. The Serbajadi protected forest of East Aceh District has high biodiversity including medicinal plants which have been utilized by the community as traditional medicine. However, their knowledge of ethnobotanical uses of medicinal plants is threatened due to the lack of written records and the rapid socio-cultural changes as a consequence of economic development. Therefore, this study aims to study wild medicinal plants and traditional knowledge in the Serbajadi protected forest, East Aceh District, Indonesia. This study used a combination of data collection methods, namely field surveys, plant collections, and community interviews. The snowball sampling technique was used to select 320 interviewees. The results showed that local people use 88 different wild medicinal plant species from 78 genera and 46 families to treat 32 different diseases. The most common ailments to cure are fever, cough, and diarrhea. *Ageratum conyzoides* is the most known medicinal plant species with a relative frequency citation index of 0.97, while *Acorus calamus* is the most commonly used medicinal plants than the younger generation, indicating that traditional knowledge is eroding as generations pass. In order to ensure the sustainability of medicinal plants and the preservation of traditional knowledge in the future, the initiative to preserve medicinal plants must be increased, particularly among the younger generation.

Keywords: Biodiversity, East Aceh, Serbajadi, traditional knowledge, wild medicinal plant

INTRODUCTION

Since the ancient period, medicinal plants have been widely used as medicine for a variety of diseases by people all over the world (Qureshi et al. 2016). Traditional wisdom regarding medicinal plants and their usage has been passed down from generation to generation and has proven to be effective in maintaining the health of local populations (Silalahi 2016). The information regarding the usage of traditional medicinal plants serves as a starting point to generate scientific data produced from ethnomedicine research, and this is one of the most efficient ways to discover new compounds in therapy, both in terms of time and money (Purwanto 2002). Such scientific effort makes medicinal plants continue to entice the pharmaceutical industry, particularly in the search for superior modern medications (Rivera et al. 2005).

Phytotherapy is used by an estimated 80 percent of the world's population (Miraldi and Baini 2018). Antiviral activity has been discovered in a variety of plants. According to Perez (2003), 20-30% of tropical plants have antiviral activity. Plants with medical uses have long been utilized to treat a variety of infectious and non-communicable disorders. Medicinal herbs have long been

used in both developing and developed countries (Kidane et al. 2018; Hu et al. 2020; Elfrida et al. 2021; Pathy et al. 2021). According to the World Health Organization (WHO), herbal medications are utilized by roughly 80% of the world's population for health care systems particularly in rural regions (Hu et al. 2020), owing to the country's lack of modern health facilities. These traditional medicines have evolved into a source of low-cost primary health care (Aziz et al. 2018).

Indonesia has a high biodiversity with approximately 30,000 species of flowering plants, of which 7000 species are known to have medicinal potentials (Jumiarni and Komalasari 2017; Navia et al. 2021; Elfrida et al. 2021). For example, a study by Setiawati et al. (2016) found that many plants in the forest contain substances with pharmacological properties and bioactivity that can be utilized to cure mild, serious, and degenerative disorders, as well as cancer. The high diversity of plants is also important in terms of cultural aspect (Silalahi 2016; Sutrisno et al. 2020), as well as for the provision of food (Navia et al. 2020b; Sutrisno et al. 2021; Syamsuardi et al. 2022; Ramaidani and Navia 2022; Suwardi et al. 2022a), fuelwood, construction material and fodder (Elfrida et al. 2020).

Each ethnic group in Indonesia has its unique knowledge of how to use diverse biological resources, including for medication and health care. Ethnobotanical knowledge of medicinal plants has long been owned by local communities across Indonesia (Ani et al. 2021), and this tradition was established by the people of Kalimantan and subsequently promoted by the people of Java (Nurrani et al. 2015). The community's knowledge and skills in the usage of traditional medicinal herbs have been passed down through oral storytelling from generation to generation and have been preserved till now (Suwardi et al. 2021; Navia et al. 2021b). The use of medicinal plants and the collection of knowledge about traditional pharmaceutical methods is a rich cultural heritage that is an intrinsic part of local customs and culture, and it must be preserved in order to ensure its long-term usage. Yet, such traditional knowledge is threatened to be eroded or even lost or endangered (Pathy et al. 2021) due to various factors, including westernization, acculturation, and education; population reduction and extinction of medicinal plants caused by degradation and destruction of natural habitats; and a lack of passion among young people for traditional culture (Yineger et al. 2008; Merétika et al. 2010; Ianni et al. 2015; Bruschi et al. 2019; Weckmüller et al. 2019; Suwardi et al. 2021; Suwardi et al. 2022b).

The Acehnese, one of the biggest ethnic groups in Aceh Province, and the Jamee Anak Tribe in South Aceh have both used plants as medicine (Suwardi et al. 2021: Navia et al. 2020b; Navia et al. 2021b; Adnan et al. 2022). Red ginger (Zingiber officinale Roscoe), turmeric (Curcuma longa L.), temulawak (C. xanthorriza Roxb), guava (Psidium guajava L.), and garlic are among the plants used by the Acehnese and Anak Jamee. Antibacterial and antiviral activities are reported to exist in Allium sativum L. (Suwardi et al. 2021). Although the usage of medicinal plants in Indonesia has been reported in several locations, particularly in Aceh Province (Elfrida et al. 2021; Navia et al. 2020b; Navia et al. 2021b; Adnan et al. 2022), much of their knowledge data has not been recorded, including the community in East Aceh District. Furthermore, the lack of written records and conservative inheritance behavior poses a threat to traditional medicinal knowledge. Traditional knowledge can be used to help with on-the-ground conservation (conservation in natural habitats) (Suwardi et al. 2022b). Therefore, medicinal plants, as well as the related indigenous wisdom in this area, must be studied and documented.

The aim of this study was to examine medicinal plants and traditional knowledge by local communities living around Serbajadi protected forest, East Aceh District, Indonesia. The Serbajadi protected forest is one area that still preserves biodiversity in Aceh Province. The multipurpose protected forest area is 167,317 Ha in size, with the Gayo Tribe being the majority of the population of the area (The Central Bureau of Statistics of East Aceh District 2021). The importance of the protected forest in terms of biodiversity and the uniqueness of the Gayo people provide an excellent context for the ethnobotanical study of medicinal plants since local communities living in the surrounding area still practice local wisdom, mainly using plants as food (Ramaidani and Navia 2022) and medicine.

MATERIALS AND METHODS

Study area

This study was conducted in fifteen villages of Serbajadi sub-district (4°37'42.3"N, 97°24'00.6"E, 1250 m a.s.l.), East Aceh District, Indonesia including Lokop, Tualang, Terujak, Leles, Ujung Karang, Umah Taring, Sunti, Sekualan, Loot, Nalon, Jering, Rampah, Mesir, Selemak, and Sembuang villages (Figure 1).

The area has a tropical humid climate with a dry season that lasts from January to July and a rainy season that lasts from August to December. The average annual rainfall is 6,369 mm, with an average of 255 rainy days, and the average rainfall is 455/18 mm/day. The average temperature is around 20.10°C, with an average humidity of 80%. The topography is generally mountainous and hilly, and the area is characterized by a cropping system dominated by rice and vegetables (The Central Bureau of Statistics of East Aceh District 2021).

Sample size and informant selection

Fifteen villages were sampled as presented in Table 1. To ensure a representative sample for the fifteen villages, the sample size was determined using Cochran's sample size formula as presented by Bartlett et al. (2001).

$$n = N/1 + N(e)2$$

Where: n is the research sample size, N is the total number of households in all fifteen selected villages, e is the maximum variability or margin of error of 5% (0.05), whereas 1 is the probability of the event occurring. As a result, a total sample size of:

$$n = 1,592/L + 1,592(0.05)2, n = 320$$

The sample size of informants for each village was determined based on the proportion of households (HH) in the respective villages. For example, the total number of households in Tualang was 125, yielding a number of 25 (n = $125 \times 320/1,592 = 25$). The same calculation was performed for the other villages as shown in Table 1.

Ethnobotanical data collection

Fieldwork was conducted for data documentation and plant collection. Before the interviews, all informants were provided formal written consent, including permission for publication. A total of 320 women informants were divided into six age groups (1) 15-25, (2) 26-35, (3) 36-45, (4) 46-55, (5) 56-65 and (6) > 65 years old. The selection of women respondents was based on the rationale that women are commonly responsible to give treatment when family members get health problems. Interviews and transect walks were the most common techniques of field surveys. Informants were asked to complete a semi-structured questionnaire about their traditional knowledge, plant use, disease treatment, plant's part used, and method of preparation and administration. All interviews were conducted in their native language (majority in Gayo language) with the assistance of native translators, and the data was then translated into English.

Figure 1. Shows the site of the studied area. Serbajadi Subdistrict, East Aceh, Indonesia

Name of village	Area in km ²	No. of population	No. of households	No. of respondents involved in the study	
Jering	150	374	119	24	
Leles	200	454	134	27	
Lokop	81.71	659	195	39	
Loot	75	421	128	26	
Mesir	125	173	72	14	
Nalon	125	384	104	21	
Rampah	175	429	144	28	
Sekualan	150	306	102	21	
Selemak	74.72	251	78	16	
Sembuang	135	243	76	15	
Sunti	120	318	108	22	
Terujak	150	332	101	20	
Tualang	50.11	399	125	25	
Ujung Karang	243.46	225	63	13	
Umah Taring	115	133	43	9	
Total	1,970	5,101	1,592	320	

Species documentation and identification

During the field survey, plant specimens were collected. The voucher specimens were identified at the Laboratory of Biology, Universitas Samudra, Aceh, Indonesia. The botanical name was updated using the Plants of the World Online website (https://powo.science.kew.org/).

Data analysis

Relative Frequency Citation (RFC)

The ethnomedicinal data were quantitatively analyzed using a relative frequency citation (RFC) index to represent the local importance of each species (Vitalini et al. 2013) as formulated below:

$$RFC = FC/N (0 < RFC < 1)$$

Where: the frequency of citation (FC, the number of informants mentioning the use of the species) divided by

the total number of informants participating in the survey (N).

Use Value (UV)

The relative importance of a given medicinal plant species was calculated using the Uvs (medicinal use-value) parameter developed by Evert et al. (2009):

$$UV_s = \sum_{i=1}^n \frac{U_{is}}{N_s}$$

Where: Uvs represents the use-value of a given species *s*; U represents the number of uses of species *s* mentioned by respondent I and Ns represents the total number of respondents. High UV indicates high use reports for a plant that is important to the local community. Low UV indicates that there are few reports of its use.

Informant Agreement Ratio (IAR)

The Informant Agreement Ratio (IAR) was calculated in the manner described by Nzuki et al. (2013):

$$IAR = \frac{Nr - Na}{Nr - 1}$$

Where: Nr is the total number of citations for the species and Na is the number of diseases for which the species has been cited.

Informant Consensus Factor (ICF)

The Informant Consensus Factor (ICF) is calculated as follows by Cornara et al. (2014):

$$ICF = \frac{N_{ur} - N_t}{N_{ur} - 1}$$

Where: Nur represents the number of useful reports in each category and Nt represents the total number of species used by all informants in a given category.

RESULTS AND DISCUSSION

Socio-demographic characteristics

A total of 320 informants were interviewed during this study, all of them are women between the ages of 15 and 90 years. The majority of them had an elementary level of education (36.88%), while the percentages of other levels (Junior, Senior, University, and no education) were 26.25%, 22.5%, 8.75%, and 5.63%, respectively (Table 2).

Diversity of wild edible fruit plants and their uses

In the study area, 88 medicinal plant species from 46 families were identified. Table 3 contains ethnomedicinal information for each species, including its family name, scientific name, vernacular name, growth form, plant parts used, preparation, application methods, and disease.

Asteraceae and Lamiaceae contributed the most medicinal species, with 8 species each (Figure 2), followed by Euphorbiaceae with 5 species, Fabaceae and Poaceae with 4 species each, Acanthaceae, Burseraceae, Cyperaceae, - and Myrtaceae with 3 species each, and the remaining families each with one or two species. Another study found that Asteraceae and Lamiaceae were the dominant families with 5-15 medicinal plant species in South Aceh (Suwardi et al. 2021), Malaysia (Ramli et al. 2021), Pakistan (Hussain et al. 2022), Southwest Algeria (Bouafia et al. 2021), and Ethiopia (Bahadura et al. 2020; Chekole et al. 2015; Getaneh and Girma 2014; Meragiaw et al. 2016).

The Asteraceae family's dominance may be due to the fact that it contains a diverse range of biologically active compounds and is the largest family in the plant kingdom (Chijindu et al. 2020). Other studies, however, discovered that Zingiberaceae (Navia et al. 2021) and Euphorbiaceae (Jima and Megersa 2018; Tamiru and Asalfew 2016) were dominant over others. The use of the same plant species in different locations may be due to their widespread distribution, to serve a specific purpose, or to traditional knowledge becoming a closely guarded secret (Tugume and Nyakoojo 2019).

Growth form and plant parts used

The results of growth form analysis revealed that herbaceous plants represent the highest proportion (42 species), followed by the tree (27 species), shrub (14 species), and climber (5 species) (Figure 3).

Several previous studies show similar results that 39.9%-72.64% of respondents use herbaceous plants as traditional medicines both in Indonesia and in other countries (Amsalu et al. 2018: Ali et al. 2020: Hu et al. 2020; Kidane et al. 2018; Hussain et al. 2022). This is likely because the search and mode of use of this plant group are easy besides the therapeutic indication of its medicinal properties (Baydoun et al. 2015; Bahadura et al. 2020). However, a study conducted in Aceh Tamiang District reported that the dominant medicinal plants were shrubs (33%) and Ani et al. (2021) found that trees were the dominant medicinal plant species in Ndano village, West Nusa Tenggara. The variation in the use of ethnomedicine based on the growth form of this medicinal plant can depend on differences in environmental conditions, belief systems in socio-cultural aspects, and medical practices in various regions and countries.

Local communities in the study area use different plant parts to prepare traditional medicine (e.g., leaf, stem, root, bark, and fruit) (Figure 4).

Table 2. Socio-demographics of respondents

Variable		Total	Percentage
Gender	Women	320	100
Age	15-25	32	10
	26-35	63	19.69
	36-45	74	23.13
	46-55	61	19.06
	56-65	62	19.38
	>65	28	8.75
Education	No education	18	5.63
	Elementary school	118	36.88
	Junior High School	84	26.25
	Senior High School	72	22.5
	University	28	8.75
98	8		
8			

Figure 2. Number of plant species by the family of medicinal plants in Serajadi Sub-district, East Aceh, Indonesia

Table 3. List of wild medicinal	plants in Serajadi Sub-district,	East Aceh, Indonesia
		,

Family	Vernacular	Growth	Plant	Mode of	Disease	RFC	UV
Species name	name	form	part used	preparation	Discuse	мс	01
Acanthaceae			-	- ·	_	0.40	0.00
<i>Clinacanthus nutans</i> (Burm.f.) Lindau	Daun gajah	Herb	Leaf	Decoction	Fever	0.63	0.90
<i>Pseuderanthemum variabile</i> (R.Br.) Radlk.	Bunga lede	Herb	Leaf	Decoction	Hypertension, diarrhea, rheumatoid, dysentery, constipation, flu	0.94	0.94
Strobilanthes phyllostachya Kurz	Keji beling	Shrub	Leaf	Powder Decoction	Wound, swelling Stomachache	0.81	0.87
Acoraceae				Decoelion			
Acorus calamus L.	Jerangau	Herb	Rhizome	Decoction	Stomachache, diarrhea	0.75	0.99
Amaryllidaceae	U				,		
Crinum asiaticum L.	Bakung	Herb	Rhizome, Leaf	Powder Decoction	Wound, animal bite, Headache, fever, skin disease, ulcer	0.42	0.33
Annonaceae							
<i>Meiogyne virgata</i> (Blume) Miq.	Bunga selanga	Tree	Leaf	Powder Decoction	Wound Stomachache	0.45	0.45
Maasia glauca (Hassk.) Mols,	Pete jawa	Tree	Leaf	Powder	Wound	0.27	0.27
Kessler & Rogstad Apiaceae							
<i>Centella asiatica</i> (L.) Urb.	Daun pegege	Herb	Leaf	Powder Decoction	Skin diseases, wound Headaches, ulcers	0.72	0.98
Aquifoliaceae		-					
<i>Ilex cymosa</i> Blume Asparagaceae	Unknown	Tree	Leaf	Powder	Skin disease	0.11	0.11
Dracaena angustifolia (Medik.) Roxb.	daun nongkal/ daun suji/bulat lepat	Shrub	Leaf	Powder	Allergy	0.14	0.14
Asteraceae	T .		T C	D		0.01	0.01
Acmella uliginosa (Sw.) Cass.	Jotang	Herb	Leaf	Decoction	Mouth ulcers, toothache, sore throat, stomach ache, toothache	0.91	0.91
Ageratum conyzoides L.	Karpe Bau	Herb	Leaf	Decoction	Stomachache, fever, flu	0.82	0.97
Austroeupatorium inulifolium (Kunth)	Daun kaper/daun kirinyuh	Herb	Leaf	Decoction	Cough	0.97	0.95
Bidens biternata (Lour.) Merr.	Korpe	Herb	Bark	Decoction	Malaria.	0.13	0.38
& Sherff	kerebu/subang		Leaf	Infusion	Leprosy, ulcers, diarrhea, digestive disorders, flu		
				Powder	Wound		
Chromolaena odorata (L.)	Minjangan	Shrub	Leaf	Powder	Flatulence, skin disease	0.31	0.25
R.M.King & H.Rob.							
Clibadium surinamense L.	Kerpe kucing	Shrub	Leaf	Decoction	Fever	0.27	0.23
Crassocephalum crepidioides	Kerpe kapas	Herb	Leaf	Powder	Wounds Stomachacha	0.38	0.38
(Benth.) S.Woore	Vorno sosom/	Uarb	Loof	Decoction	Malaria paine asthma worm	0.28	0.46
(L.f.) Kuntze	bandutan	TIETU	Leai	Decoction	infections	0.28	0.40
Aspleniaceae							
Diplazium esculentum (Retz.) Sw	Kloang	Herb	Leaf	Powder, Decoction	ltch, Cough, diarrhea, fever, postpartum care	0.72	0.72
Basellaceae							
Anredera cordifolia (Ten.)	Kerpe kekurian/	Herb	Leaf	Powder	Wound,	0.31	0.66
Steenis	daun binahong			Decoction	Appetite		
Burseraceae Dacryodes incurvata (Engl.)	Kedondong	Tree	Leaf	Powder,	Wounds,	0.09	0.12
H.J.Lam		T	T C	Decoction	Ringworms	0.02	0.02
H.J.Lam	Daun loupok	Tree	Leaf	Powder	Wounds	0.03	0.03
Santiria rubiginosa Blume	Pasak bumi	Tree	Leaf	Decoction	Stomachaches	0.02	0.02
Campanulaceae Hippobroma longiflora (L.)	Katarak	Herb	Leaf	Decoction	Eye ache	0.55	0.59
Carvonhyllaceae							
Drymaria cordata (L.) Willd.	Daun	Tree	Leaf	Decoction	Cold, headache, ulcer	0.35	0.35
Clusiacaaa	compionan						
Garcinia bancana Mio	Mundu	Tree	Fruit	Juice	Cough, sore throat diarrhea	0.91	0.90
Garcinia xanthochymus Hook.f. ex T.Anderson	Asam kandis	Tree	Fruit	Juice	Cough, fever, sore throat, diarrhea	0.90	0.91

BIODIVERSITAS 23 (10): 4959-4970, October 2022

Costaceae Hellenia speciosa (J.Koenig) S.R.Dutta	Unknown	Herb	Leaf, stem, rhizome	Decoction	Cough, diabetes, fever, stomachache	0.55	0.55
Cyperaceae Cyperus rotundus L.	Rumput teki	Herb	Stem	Decoction	Diarrhea, diabetes, malaria	0.66	0.83
Scleria levis Retz. Scleria harlandii Hance	Kerve teles Berdung	Herb Herb	Stem Stem	Decoction Decoction	Cough Cough	0.41 0.40	0.41 0.40
Euphorbiaceae Claoxylon indicum (Reinw. ex	Daun rampu	Shrub	Leaf	Decoction	Laxative, asthma	0.64	0.37
Homalanthus populneus (Geiseler) Pax	Daun kareumbi	Tree	Leaf	Dried, Decoction	Fever, Diarrhea	0.38	0.38
<i>Mallotus philippensis</i> (Lam.) Müll.Arg.	Kayu kapit	Tree	Fruit Leaf	Powder Decoction	Skin disease Stomach ulcers	0.86	0.86
Macaranga gigantea (Rchb.f. & Zoll.) Müll.Arg.	Mahang	Tree	Leaf, bark	Infusion	Diarrhea, dysentery	0.38	0.38
Mallotus paniculatus (Lam.) Müll.Arg.	Balik angin	Tree	Leaf	Infusion	Fever	0.42	0.42
Mimosa pudica L.	Putri malu	Herb	Leaf	Powder Infusion	Wound Dysentery, hypertension, urinary problem	0.35	0.35
Senna alata (L.) Roxb. Spatholobus ferrugineus (Zoll. & Moritzi) Benth	Gelingan Akar kayu bajakan	Climber	Leaf Leaf Bark	Powder Decoction Powder	Skin disease Intestinal worms Snake poisoning	0.54 0.31	0.54 0.31
Uraria lagopodioides (L.) DC.	Unknown		Leaf	Decoction	Dysentery, diarrhea, fever	0.11	0.24
Hypoxidaceae Curculigo latifolia Dryand. ex W.T.Aiton	Buah tapus		Leaf	Infusion	Coughs	0.28	0.24
Lamiaceae			_				
Clerodendrum calamitosum L.	Bunga katarak	Shrub	Root Leaf	Decoction	Fever, menstrual disorders, jaundice, hypertension	0.89	0.69
Coleus amboinicus Lour.	Daun porbangun/ sebangun	Herb	Leaf	Decoction Powder	Cold, asthma, constipation, headache, cough, fever	0.91	0.90
<i>Coleus scutellarioides</i> (L.) Benth	Celala	Herb	Leaf	Decoction	Fever	0.23	0.06
Mentha spicata L.		Herb	Leaf	Infusion	Fever, headache, digestive disorder	0.10	0.10
<i>Ocimum tenuiflorum</i> L. <i>Paraphlomis javanica</i> (Blume) Prain	Rerukui Daun suyuk	Herb Shrub	Leaf Leaf	Infusion Decoction	Flatulence Fever	0.13 0.07	0.13 0.07
Pogostemon auricularius (L.) Hassk.	Bunga nilam	Herb	Leaf	Decoction	Coughs, asthma	0.10	0.10
Vitex pinnata L.	Kayu laban⁄ leban	Tree	Leaf	Decoction	Fevers, wounds	0.08	0.14
Lauraceae		T	T C	D 1		0.62	0.00
& T.Nees)	meran / kayu manis	Iree	Leaf	Powder Decoction	Diabetes	0.63	0.90
Linderniaceae Torenia crustacea (L.) Cham. & Schltdl.	Unknown	Herb	Leaf	Infusion Decoction	Dysentery, leprosy Boils, itches	0.05	0.10
Lythraceae Lawsonia inermis L.	Bunga henna/	Shrub	Leaf	Powder	Skin diseases	0.04	0.04
Malvaceae	0						
Hibiscus similis Blume Urena lobata L.	Wani Kelolot	Tree Herb	Leaf Leaf	Decoction Infusion	Coughs, fever Fever, rheumatic	0.17 0.11	0.13 0.20
Marantaceae Donax canniformis (G.Forst.) K.Schum.	Bamban	Herb	Leaf	Decoction	Fever, sore eyes	0.24	0.24
Melastoma malabathricum L.	Sengganen	Shrub	Leaf	Decoction	Stomach aches, diarrhea,	0.63	0.63
<i>Miconia crenata</i> (Vahl) Michelang.	Unknown	Tree	Leaf	Powder Infusion	Dysentery, wounds, swellings Fever, headache	0.28	0.28

Meliaceae							
Aglaia odoratissima Blume	Ukat	Shrub	Leaf	Decoction	Fever, diarrhea	0.18	0.24
Meliaceae Toona sureni (Blume) Merr	Bunga seruni	Tree	Leaf	Decoction	Fever diarrhea	0.05	0.24
Menispermaceae	Dunga seram	1100	Loui	Decoetion	i ever, durned	0.05	0.24
Arcangelisia flava (L.) Merr.	Akar kuning	Climber	Stem	Decoction	Gout arthritis	0.07	0.14
Musa acuminata Colla	Awal/kanok	Harb	Fruit	Decoction	Gout arthritis diabates	0.10	0.10
Musa acuminaia Colla Myrtaceae	Awai/ kepok	пето	riuit	Decoction	Gout artifitis, diabetes	0.10	0.10
Syzygium polyanthum (Wight) Waln	Daun salam	Tree	Leaf	Decoction	High cholesterol, hypertension	0.45	0.63
Syzygium incarnatum (Elmer)	Daun kedindiman	Tree	Leaf	Decoction	Cough	0.56	0.63
Syzygium cerasiforme (Blume)	Klampok	Tree	Leaf	Decoction	Antiinflamasi, antidiabetes	0.63	0.94
Oxalidaceae							
Oxalis corniculata L.	Lela	Herb	Whole plants	Decoction	Cough, cold, fever, stomachache	0.88	0.88
Phyllantaceae			Pranto				
Phyllanthus niruri L.	Meniran hijau	Herb	Whole plants	Decoction	Pre and postpartum treatments	0.60	0.60
Phyllanthus urinaria L.	Meniran mera h	Herb	Whole plants	Decoction	Pre and postpartum treatments, malaria, fever, hypertension	0.59	0.83
<i>Piper ornatum</i> N F Br	Sirih merah	Climber	Leaf	Decoction	Fever	0.94	0.94
Piper crocatum Ruiz & Pav.	Sirih hutan	Climber	Leaf	Powder	Wounds, skin disease	0.93	0.93
Plantaginaceae						0.00	0.00
Plantago major L.	Daun sendok	Herb	Leaf	Decoction	Antidiabetes, cough	0.88	0.88
Imperata cylindrica (L.)	Alang-alang	Herb	Leaf,	Decoction	Fever, coughs, nephrolithiasis	0.72	0.72
Leersia hexandra Sw.	Rumput darat	Herb	Leaf	Decoction	Asthma	0.12	0.12
Lophatherum gracile Brongn.	Rumput bambu	Herb	Leaf	Decoction	Fever, headache, cold	0.17	0.17
Paspalum conjugatum P.J.Bergius	Rumput kerbau	Herb	Leaf	Powder	Wounds	0.13	0.13
Polygalaceae							
Polygala paniculata L.	Rumput wangi	Herb	Leaf	Decoction	Coughs, fever, cold	0.14	0.14
Xanthophyllum amoenum Chodat	Langir	Tree	Leaf	Powder	Skin disease	0.28	0.28
Rosaceae	Cengkenir	Shruh	Leaf	Decoction	Diarrhea fever stomachache	0.24	0.24
Rubus motaceanus E.	Dari	Shut	Laaf	Decoetion	dysentery	0.24	0.24
Rubiaceae	Beri	Shrub	Leaf	Decoction	Diarrhea, fever	0.29	0.29
<i>Neonauclea calycina</i> (Bartl. ex DC.) Merr.	Sang	Tree	Leaf	Powder	Wounds	0.04	0.04
<i>Rubia cordifolia</i> L. Rutaceae	Araparap	Climber	Leaf	Decoction	Nephrolithiasis	0.07	0.07
Murraya koenigii (L.) Spreng Sapotaceae	Temurui	Tree	Leaf	Decoction	Stomachache, fever	0.31	0.31
Palaquium walsurifolium Pierre ex Dubard	Balam	Tree	Leaf	Powder	Skin disease	0.20	0.20
Simaroubaceae Eurycoma longifolia Jack	Tongkat Ali	Tree	Root, stem	Decoction	Stomachache, fever, malaria, male aphrodisiac	0.92	0.90
Solanaceae Physalis angulata L.	Ciplukan	Herb	Leaf, fruit	Decoction infusion	Cold, fever, hypertension	0.86	0.86
Stemonuraceae	Court 7	T	T. C	D	Standard a ha	0.10	0.10
Stemonurus secundiflorus Blume	Sembasah	Iree	Leat	Decoction	Stomachache	0.18	0.18
Laportea decumana (Roxb.) Wedd.	Daun gatal	Shrub	Leaf	Powder	Skin disease	0.19	0.19
Urticaceae Elatostema strigosum Hassk.	Sisik naga	Herb	Leaf	Decoction	Fever, asthma, stomachache	0.08	0.08
Zingiberaceae	т 1	TT 1	D1 '	D		0.07	0.07
Ettingera elatior (Jack) R.M.Sm.	Terpuk	Herb	Khizome	Decoction	Stomachache	0.27	0.27

Figure 3. The growth form of medicinal plants in Serajadi Subdistrict, East Aceh, Indonesia

Figure 4. Plant part used for medicinal uses by the Gayo tribe in Serajadi Sub-district, East Aceh, Indonesia

The community in the study area used the leaves most often in their daily ethnomedicine practice (75%). This is consistent with other ethnomedicine research in several locations, including Kota Bahagia, South Aceh (28%) (Suwardi et al. 2021), Aceh Tamiang (50%) (Navia et al. 2021), Nigeria (46%) (Mukaila et al. 2022), and the Philippines (80%) (Belgica et al. 2021). Leaves are known as part of photosynthesis to occur because they contain many active compounds that are used to synthesize most herbal medicines in high concentrations (Odchimar et al. 2017). Tantengco et al. (2018) discovered secondary metabolite compounds in the leaves, including alkaloids, saponins, and phenolic compounds. People believe that leaves are easy to find in large quantities and that they can help plants survive for a long time. A prominent example of medicinal plants with uses of leaves is *Centella asiatica*, which contains pentacyclic triterpenes, primarily asiaticoside, madecassoside, asiatic and madecassic acids, and is effective in treating small wounds, hypertrophic wounds, burns, psoriasis, and scleroderma (Bylka et al. 2013; Gray et al. 2018). The use of C. asiatica aqueous leaf extract in the treatment of skin diseases has been shown to reduce photoaging, cellulite, and striae while having no toxic effect (Bylka et al. 2013). In addition, *C. asiatica* also contains bioactive compounds such as flavonoids (rutin, quercetin, kaempferol, catechin, luteolin) and phenolic acid (gallic acid) which have antioxidant activity (Azmin and Mat Nor 2020).

Mode of preparation

There are numerous methods for preparing medicinal plants for use in treating human diseases. The most common method of preparing traditional medicines from plant material in the study area was decoction (55%), followed by powder (15%), infusion (8%), and juice (2%) (Figure 5).

During the fieldwork, respondents stated that decoction improves the taste of medicinal plants and eases the absorption of herbal remedies. The decoction method is widely used by other ethnic groups around the world and is considered the primary method of preparing herbal remedies. After boiling, a decoction is taken, and there is also used for bathing after being boiled. According to Mela et al. (2022), most medicinal plants are boiled before being combined in the form of herbal medicine. All nutritious substances contained in medicinal plants can be dissolved into the water during the boiling process (Efremila et al. 2015).

The research area implements internal and external administration strands to treat disease. Most species of plants are used singly to treat disease, while others are used in combination with other species. For example, Ageratum convzoides is used alone to treat stomachaches, and C. asiatica is mixed with honey to treat coughs in children. Oldenlandia corvmbosa is used alone in the treatment of hepatitis in the Aneuk Jamee, whereas C. asiatica is given orally in combination with honey to treat coughs (Suwardi et al. 2021). C. asiatica is used in traditional Indian medicine to treat asthma, skin disorders, stomach ulcers, and aches, kidney disorders, leprosy, gastric disorders, cure dysentery, and improve memory (Jamil et al. 2007), whereas, in Nepal, leaf raw to indigestion in animals (Dhital et al. 2021) and leaf juice mixed with palm leaves are used to cool the body and stomach (Mahato and Chaudhary 2005).

Figure 5. Preparation methods of medicinal plants by the Gayo tribe in Serajadi Sub-district, East Aceh, Indonesia

Ageratum conizoides had the highest value of RFC with 0.97, followed by Pseuderanthemum variabile (0.94), Piper cronatum (0.94), P. ornatum (0.93), Eurycoma longifolia (0.92), Garcinia bancana (0.91), Coleus amboinicus (0.91), Diplazium esculentum (0.91), G. xanthochymus (0.90), and Clerodendrum calamitosum (0.89) (Figure 6). Medicinal plant use values ranged from 0.02 to 0.99. Acorus calamus (0.99), C. asiatica (0.98), Acmella uliginosa (0.97), A. conyzoides (0.95), Syzygium polyanthum (0.94), Piper cronatum (0.94), P. variabile (0.94), Piper ornatum (0.93), G. xanthochymus (0.91), and D. esculentum (0.91) were the most important species in the traditional medicine of local communities, with UVs > 0.90 (Figure 6). The UV of medicinal plants ranged from 0.02 to 0.99, indicating that Santiria rubiginosa of the Burseraceae family had the lowest relative importance and A. calamus of the Acoraceae family had the highest. The A. calamus plant's rhizome is widely used as a remedy for stomachaches and diarrhea. This plant was discovered growing in the wild at the research site. This is consistent with the findings of Jadid et al. (2020), who discovered that A. calamus has a high value as a fever medicine among the Tengger tribe.

The level of agreement among informants on plant use ranged from 0.75 to 1.0. The maximum IAR value for 77 percent of the species was 1 (Figure 7). As a therapy for fever, gout arthritis, stomachache, diarrhea, wound, asthma, cough, flatulence, allergy, and skin diseases, these species have the highest level of agreement.

Diseases reported by respondents were classified using the International Classification of Diseases - 10th Edition (https://icd.who.int). In the study area, 32 diseases in 14 categories were documented (Table 3).

The most common use-report categories were certain infectious and parasitic diseases (821 use-reports, 33 species), followed by symptoms, signs, and abnormal clinical and laboratory (743 use-report, 51 species), diseases of the digestive system (678 use-reports, 31 species), and diseases of the circulatory system (264 usereports, 6 species). The ICF values ranged from 0.8 to 0.992. Most of the disease categories had a high ICF value. They were diseases of mental and behavioral disorders (0.992), diseases of the musculoskeletal system, and connective tissue (0.981), while the lowest was for diseases of the respiratory system (0.800).

Figure 6. Plant species with the highest Relative Frequency Citation (RFC) (A) and Use Value (B)

Figure 7. Ranking of most important medicinal plant species according to IAR (Informant Agreement Ratio)

Classification of diseases	Specific disease name	Number use- report	Number species	ICF	
Certain infectious and parasitic diseases (CID)	Diarrhea, ringworm, intestinal worm, malaria, dysentery, leprosy	821	33	0.961	
Diseases of the circulatory system (CSD)	Hypertension	264	6	0.981	
Diseases of the digestive system (DSD)	Constipation, gastric ulcer, mouth ulcer, stomachache, toothache, indigestion, cholesterol	678	31	0.956	
Diseases of the eye and adnexa (EAD)	Eye inflammation, sore eyes	24	2	0.957	
Diseases of the genitourinary system (GD)	Menstrual pain, urinary, nephrolithiasis	42	7	0.854	
Diseases of the respiratory system (RSD)	Asthma, influenza, sore throat	41	9	0.800	
Diseases of the skin and subcutaneous tissue (DS)	Itch, swelling, boils, allergy	121	5	0.967	
Endocrine, nutritional and metabolic diseases (ENM)	Diabetes	64	6	0.921	
Symptoms and signs involving the circulatory and respiratory systems (DCR)	Cough, nose bleeding	87	18	0.802	
Symptoms, signs, and abnormal clinical and laboratory (SSA)	Fever, cold, flatulence, pimple, jaundice, headache, pains	743	51	0.933	
Diseases of the musculoskeletal system and connective tissue (DMC)	Gout arthritis, Rheumatism	163	4	0.981	
Symptoms and signs involving the skin and subcutaneous tissue (SCT)	Skin burn	98	13	0.876	
Mental and behavioral disorders (MBD)	Appetite	34	1	1.000	
Injury, poisoning, and certain other consequences of external causes (IPD)	Wound, snack poisoning	210	17	0.923	

Table 3. Categories of disease in the study area and the Informant Consensus Factor (ICF)

Appetite was a specific disease that had a high ICF value. According to respondents, appetite was common in children under the age of five. The leaf ethanol extract of *Anredera cordifolia* contains phenolic compounds, flavonoids, alkaloids, and tannins and has a high antioxidant activity with an IC50 value of 87.423 g/mL. (Souhoka et al 2021). *A. cordifolia* contains flavonoid compounds that are useful as antioxidants and can also increase appetite, while saponins can improve nutrient absorption by increasing the permeability of cell walls in the intestine (Irwani and Candra 2020).

The threat of wild medicinal plants

The Gayo tribe has passed down traditional knowledge of medicinal plants from generation to generation. Each respondent age group's average number of species identified ranged from 20.14 ± 1.12 (15-25 years) to 80.28 \pm 1.21 (over 65 years). The statistical analysis revealed a significant difference between the elders and the younger generation in traditional knowledge of medicinal plants (P 0.05; n = 320). This indicates that traditional knowledge is eroding across generations. This study strengthens the findings of Sujarwo et al. (2014) and Weckmüller et al. (2019), who discovered that older generations have more knowledge of medicinal plants than younger generations. Unfortunately, this traditional knowledge is not well documented as the transfer of knowledge is still done orally. It was discovered during discussions with respondents that many children were interested in learning medicinal plants from healers or elders in their village. This is in line with a study on medicinal plants in the Aneuk Jamee tribe, where the younger generation learns a lot of medicinal plants from their parents (Suwardi et al. 2022a).

This traditional knowledge must be safeguarded by involving the Indonesian government's Education Office in the integration of traditional knowledge into the basic education curriculum. This practice could be part of an effort to safeguard traditional knowledge, natural resources, and biodiversity. According to Ramadoss and Moli (2011), biodiversity education programs can increase students' knowledge, motivation, and expertise in conserving and protecting local natural resources and biodiversity in India.

In conclusion, the community surrounding the Serbajadi protected forest in East Aceh District still has a strong botanical knowledge of the diversity of wild plants used as traditional medicines to maintain family health. The protected forest in their area contains a wide variety of potential wild medicinal plants for daily use. Culture and local wisdom preserve plant diversity by creating local wisdom to preserve plants and good practices in their use. This study's documentation of the diversity of traditional wild medicinal plants for family health contributes to the preservation of traditional knowledge while also providing information about the potential of these plants to be developed further as herbal medicines.

ACKNOWLEDGEMENTS

We are grateful to all people in the studied region for their kind hospitality and share of knowledge. We also want to express our gratitude to the Indonesian Ministry of Education, Culture, Research, and Technology and Education Fund Management Institute for supporting this study with a Scientific Research Grant in the year 2021 with Independent Research Scheme and Universitas Samudra, Indonesia for supporting this study.

REFERENCES

- Adnan, Navia ZI, Silvia M, Antika M, Suwardi AB, Baihaqi, Yakob M. 2022. Diversity of herbs and spices plants and their importance in traditional medicine in the South Aceh District, Indonesia. Biodiversitas 23 (7): 3836-3843. DOI: 10.13057/biodiv/d230761.
- Ali M, Hussain D, Hussain W. 2020. Quantitative ethnobotanical study of Indigenous knowledge on medicinal plants used by the tribal communities of Gokand Valley, District Buner, Khyber Pakhtunkhwa, Pakistan. Plants 9 (8): 1001. DOI: 10.3390/plants9081001.
- Amsalu N, Bezie Y, Fentahun M, Alemayehu A, Amsalu G. 2018. Use and conservation of medicinal plants by Indigenous People of Gozamin Wereda, East Gojjam Zone of Amhara Region, Ethiopia: An ethnobotanical approach. Evid-Based Complement Altern Med 1-23. DOI: 10.1155/2018/2973513.
- Ani N, Sukenti K, Aryanti E, Rohyani IS. 2021. Ethnobotany study of medicinal plants by the Mbojo tribe community in Ndano village at the Madapangga Nature Park, Bima, West Nusa Tenggara. Jurnal Biologi Tropis 21 (2): 456-469. DOI: 10.29303/jbt.v21i2.2666. [Indonesian]
- Aziz MA, Adnan M, Khan AH, Shahat AA, Al-Said MS, Ullah R. 2018. Traditional uses of medicinal plants practiced by the indigenous communities at Mohmand Agency, FATA, Pak J Ethnobiol Ethnomed 14 (1): 1-16. DOI: 10.1186/s13002-017-0204-5.
- Azmin SNHM, Mat Nor NS. 2020. Chemical fingerprint of *Centella* asiatica's bioactive compounds in the ethanolic and aqueous extracts. Adv Biomark Sci Technol 2: 35-44. DOI: 10.1016/j.abst.2020.10.001.
- Bahadura S, Khan MS, Shah M, Shuaib M, Ahmad M, Zafara M, Begume N, Gula S, Ashfaqa S, Mujahidf I, Hussai F. 2020. Traditional usage of medicinal plants among the local communities of Peshawar valley, Pakistan. Acta Ecol Sin 40 (1): 1-29. DOI: 10.1016/j.chnaes.2018.12.006.
- Bartlett JE, Kotrlik JW, Higgins CC. 2001. Organizational research: Determining appropriate sample size in survey research. Inf Technol Learn Perform J 19 (1): 43. DOI: 10.5032/jae.2002.03001.
- Baydoun S, Chalak L, Dalleh H, Arnold N. 2015. Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. J Ethnopharmacol 173: 139-156. DOI: 10.1016/j.jep.2015.06.052.
- Belgica THR, Suba MD, Alejandro GJD. 2021. Quantitative ethnobotanical study of medicinal flora used by local inhabitants in selected Barangay of Malinao, Albay, Philippines. Biodiversitas 22 (7): 2711-2721. DOI: 10.13057/biodiv/d220720.
- Bouafia M, Amamou F, Gherib M, Benaissa M, Azzi R, Nemmiche S. 2021. Ethnobotanical and ethnomedicinal analysis of wild medicinal plants traditionally used in Naâma, southwest Algeria. Vegetos 34, 654-662. DOI: 10.1007/s42535-021-00229-7.
- Bruschi P, Sugni M, Moretti A, Signorini MA, Fico G. 2019. Children's versus adult's knowledge of medicinal plants: An ethnobotanical study in Tremezzina (Como, Lombardy, Italy). Revista Brasileira de Farmacognosia 29 (5): 644-655. DOI: 10.1016/j.bjp.2019.04.009.
- Bylka W, Znajdek-Awiżeń P, Studzińska-Sroka E, Brzezińska M. 2013. Centella asiatica in cosmetology. Postepy Dermatol Alergol 30 (1): 46-49. DOI: 10.5114/pdia.2013.33378.
- Chekole G, Asfaw Z, Kelbessa E. 2015. Ethnobotanical study of medicinal plants in the environs of Tara-gedam and Amba remnant forests of Libo Kemkem District, northwest Ethiopia. J Ethnobiol Ethnomed 11 (1): 4. DOI: 10.1186/1746-4269-11-4.
- Chijindu PCI, Okpoma MO, Atubi O. 2020. Ethnobotanical survey of medicinal plants used in Erhuwaren community in Ughelli south local government area of delta state. Unilag J Med Sci Technol 8 (1): 176-206.
- Cornara L, La Rocca A, Terrizzano L, Dente F, Mariotti MG. 2014. Ethnobotanical and phytomedical knowledge in the North-Western Ligurian Alps. J Ethnopharmacol 155: 463-484. DOI: 10.1016/j.jep.2014.05.046.
- Dhital AP, Paudel M, Karki S, Kafle S, Siwakoti M, Lamichhane D. 2021. Traditional knowledge on use of medicinal plants by Tamang Community of Dolakha, Nepal. J Plant Resour 19 (1): 192-203.

- Efremila, Wardenaae E, Lolyta S. 2015. Study on medicinal plants by Ethnic Dayak Tribe in the Kayu Tanam Village Mandor Sub District Landak Foreman. J Hutan Lestari 3 (2): 234-246. DOI: 10.26418/jhl.v3i2.10310. [Indonesian]
- Elfrida E, Mubarak A, Suwardi AB. 2020. The fruit plant species diversity in the home gardens and their contribution to the livelihood of communities in rural area. Biodiversitas 21 (8): 3670-3675. DOI: 10.13057/biodiv/d210833.
- Elfrida E, Tarigan NS, Suwardi AB. 2021. Ethnobotanical study of medicinal plants used by community in Jambur Labu Village, East Aceh, Indonesia. Biodiversitas 22 (7): 2893-2900. DOI: 10.13057/biodiv/d220741.
- Evert T, Vandebroek I, Sabino S, Van Damme P. 2009. Cultural significance of medicinal plant families and species among Quechuafarmers in Apillapampa, Bolivia. J Ethnopharmacol 122: 60-67. DOI: 10.1016/j.jep.2008.11.021.
- Getaneh S, Girma Z. 2014. An ethnobotanical study of medicinal plants in Debrelibanos wereda central Ethiopia. Afr J Plant Sci 8 (7): 366-379. DOI: 10.5897/AJPS2013.1041.
- Gray NE, Alcazar Magana A, Lak P, Wright KM, Quinn J, Stevens JF, Maier CS, Soumyanath A. 2018. *Centella asiatica* - Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem Rev 17 (1): 161-194. DOI: 10.1007/s11101-017-9528-y.
- Hu R, Lin C, Xu W, Liu Y, Long C. 2020. Ethnobotanical study on medicinal plants used by Mulam people in Guangxi, China. J Ethnobiol Ethnomed 16: 40. DOI: 10.1186/s13002-020-00387-z.
- Hussain S, Hussains W, Nawaz A, Badshah L, Ali A, Ullah S, Ali M, Hussain H, Bussmann RW. 2022. Quantitative ethnomedicinal study of indigenous knowledge on medicinal plants used by the tribal communities of Central Kurram, Khyber Pakhtunkhwa, Pakistan. Ethnobot Res Appl 23: 5. DOI: 10.32859/era.23.5.1-31.
- Ianni E, Geneletti D, Ciolli M. 2015. Revitalizing traditional ecological knowledge: a study in an alpine rural community. Environ Manag 56: 144-156. DOI: 10.1007/s00267-015-0479-z.
- International Society of Ethnobiology. 2006. International Society of Ethnobiology Code of Ethics. http://www.ethnobiology.net
- Irwani N, Candra AA. 2020. Binahong (Anredera cordifilia) leaf extract application on the physiological condition of digestive and viceral organs in broiler. Jurnal Peterpan 2 (1): 22-29. DOI: 10.25181/peterpan.v2i1.1716. [Indonesian]
- Jadid N, Kurniawan E, Himayani CES, Andriyani, Prasetyowati I, Purwani KI, Muslihatin W, Hidayati D, Tjahjaningrum ITD. 2020. An ethnobotanical study of medicinal plants used by the Tengger tribe in Ngadisari village, Indonesia. PLoS ONE 15 (7): e0235886. DOI: 10.1371/journal.pone.0235886.
- Jamil SS, Nizami Q, Salam M. 2007. Centella asiatica (Linn.) Urban: a review. Indian J Nat Prod Resour 6 (2): 158-170.
- Jima TT, Megersa M. 2018. Ethnobotanical Study of medicinal plants used to treat human diseases in Berbere District, Bale Zone of Oromia Regional State, South East Ethiopia. Evid-Based Complement Altern Med 16. DOI: 10.1155/2018/8602945.
- Jumiarni WO, Komalasari O. 2017. Inventory of medicinal plants as utilized by Muna Tribe in Kota Wuna Settlement. Tradit Med J 22 (1): 45-56. DOI: 10.22146/tradmedj.24314. [Indonesian]
- Kidane L, Gebremedhin G, Beyene T. 2018. Ethnobotanical study of medicinal plants in Ganta Afeshum District, Eastern Zone of Tigray, Northern Ethiopia. J Ethnobiol Ethnomed 14: 64. DOI: 10.1186/s13002-018-0266-z.
- Mahato RB, Chaudhary RP. 2005. Ethnomedicinal study and antibacterial activities of selected plants of Palpa district, Nepal. Ram Chandra Sharma and Madhusudhan Upadhyaya 3 (1).
- Mela YJA, Bria EJ, Tnunay IMY. 2022. Ethnobotany of semi-arid medicinal plants used by Bunaq Tribe in Lamaknen, Belu District, East Nusa Tenggara, Indonesia. Intl J Trop Dryland 6 (1): 16-25. DOI: 10.13057/tropdrylands/t060103.
- Meragiaw M, Asfaw Z, Argaw M. 2016. The status of ethnobotanical knowledge of medicinal plants and the impacts of resettlement in Delanta, Northwestern Wello, Northern Ethiopia. Evid-Based Complement Altern Med 24. DOI: 10.1155/2016/5060247.
- Merétika AHC, Peroni N, Hanazaki N. 2010. Local knowledge of medicinal plants in three artisanal fishing communities (Itapoá, Southern Brazil), according to gender, age, and urbanization. Acta Bot Brasilica 24: 386-394. DOI: 10.1590/S0102-33062010000200009.

- Miraldi E, Baini G. 2018. Medicinal plants and health in human history: From empirical use to modern phytotherapy. J Siena Acad Sci 10: 16. DOI: 10.4081/jsas.2018.8529.
- Mukaila YO, Oladipo OT, Arogundade OO, Ajao AAN. 2022. Traditional knowledge of medicinal plants used in Ile-Ife, Southwestern Nigeria. Asian J Ethnobiol 5 (2): 71-83. DOI: 10.13057/asianjethnobiol/y050201.
- Navia ZI, Audira D, Afifah N, Turnip K, Nuraini, Suwardi AB. 2020. Ethnobotanical investigation of spice and condiment plants used by the Taming tribe in Aceh, Indonesia. Biodiversitas 21 (10): 44674473. DOI: 10.13057/biodiv/d211001.
- Navia ZI, Suwardi AB, Baihaqi. 2021b. Ethnobotanical study of medicinal plants used by local communities in Sekerak Sub-district, Aceh Tamiang, Indonesia. Biodiversitas 22 (10): 4273-4281. DOI: 10.13057/biodiv/d221019.
- Navia ZI, Suwardi AB, Harmawan T, Syamsuardi, Mukhtar E. 2020. The diversity and contribution of indigenous edible fruit plants to the rural community in the Gayo Highlands, Indonesia. J Agric Rural Dev Trop Subtrop 121 (1): 89-98. DOI: 10.17170/kobra-202004061145.
- Navia ZI, Suwardi AB, Nuraini. 2021a. The importance of tropical edible fruit plants for tribal communities in East Aceh region, Indonesia. IOP Conf Ser Earth Environ Sci 637 (1): 012003. DOI: 10.1088/1755-1315/637/1/012003.
- Noverian W, Elfrida, Suwardi AB, Mubarak A. 2020. Inventory of local fruit species as a food source for the people of Lokop East Aceh. Jeumpa 7 (1): 319-327. DOI: 10.33059/jj.v7i1.2956. [Indonesian]
- Nurrani L, Tabba S, Mokodompit HS. 2015. Local wisdom in the utilization of medicine plants by community around Aketajawe Lolobata National Park, North Maluku Province. Jurnal Penelitian Sosial dan Ekonomi Kehutanan 12 (3): 163-175. DOI: 10.20886/jpsek.2015.12.3.163-175. [Indonesian]
- Nzuki BF, Céline C, Kibungu KAO, Van Damme P. 2013. Identification et importance locale des plantes médicinales utilisées dans la region de Mbanza-Ngungu, République démocratique du Congo. Bois et Forets des Tropiques 67 (316): 63-77. DOI: 10.19182/bft2013.316.a20531.
- Odchimar NMO, Nuñeza OM, Uy M, Senarath WTPSK. 2017. Ethnobotany of medicinal plants used by the Talaandig Tribe in Brgy. Lilingayon, Valencia City, Bukidnon, Philippines. Asian J Bio Life Sci 6 (1): 358-364.
- Pathy KK, Flavien NB, Honoré BK, Vanhove W, Van Damme P. 2021. Ethnobotanical characterization of medicinal plants used in Kisantu and Mbanza-Ngungu territories, Kongo-Central Province in DR Congo. J Ethnobiol Ethnomed 17: 5. DOI: 10.1186/s13002-020-00428-7.
- Perez RM. 2003. Antiviral activity of compounds isolated from plants. Pharm Biol 41 (2): 107-157. DOI: 10.1076/phbi.41.2.107.14240.
- Purwanto Y. 2002. Ethnomedicinal studies and traditional Indonesian phytopharmacopoeias. Proceedings of the Second National Seminar on Medicinal and Aromatic Plants. LIPI, Bogor. [Indonesian]
- Qureshi R, Ghazanfar SA, Obied H, Vasileva, Tariq MA. 2016. Ethnobotany: A living science for alleviating human suffering. Evid-Based Complement Altern Med 2016: 1-3. DOI: 10.1155/2016/9641692.
- Ramadoss A, Moli GP. 2011. Biodiversity conservation through environmental education for sustainable development: A case study from Puducherry, India. Intl Electr J Environ Educat 1 (2): 97-111.
- Ramaidani, Navia ZI. 2022. Documentation of the traditional Gayo food in Lokop Village, East Aceh, Indonesia. Biodiversitas 23 (4): 2017-2024. DOI: 10.13057/biodiv/d230437.
- Ramli MR, Milow P, Malek S. 2021. Diversity and traditional knowledge of medicinal plants in home gardens of Kampung Masjid Ijok, Perak, Malaysia. Biodiversitas 22 (5): 2458-2465. DOI: 10.13057/biodiv/d220502.
- Rivera D, Obon C, Inocencio C, Heinrich M, Verde A, Fajardo J, Llorach R. 2005. The ethnobotanical study of local Mediterranean food plants

as medicinal resources in Southern Spain. J Physiol Pharm 56: 97-114.

- Setiawati A, Immanuel H, Utami MT. 2016. The inhibition of *Typhonium flagelliforme* Lodd. Blume leaf extract on COX-2 expression of WiDr colon cancer cells. Asian Pac J Trop Biomed 6 (3): 251-255. DOI: 10.1016/j.apjtb.2015.12.012.
- Silalahi M. 2016. Ethnomedicine studies in Indonesia and research approaches. Jurnal Dinamika Pendidikan 9 (3): 117-124. [Indonesian]
- Souhoka FA, Kapelle IBD, Sihasale E. 2021. Phytochemical and antioxidant test of binahong (*Anredera cordifolia* (Tenore) Steenis) leaves ethanol extract. Fullerene J Chem 6 (1): 28-33. DOI 10.37033/fjc.v6i1.248.
- Sujarwo W, Arinasa IBK, Salomone F, Caneva I, Fattorini S. 2014. Cultural erosion of balinese indigenous knowledge of food and nutraceutical plants. Econ Bot 68 (4): 426-437. DOI: 10.1007/s12231014-9288-1.
- Sutrisno IH, Bachtiar A, Navia ZI, Nuraini, Suwardi AB. 2020. Documentation of ritual plants used among the Aceh tribe in Peureulak, East Aceh District, Indonesia. Biodiversitas 21 (22): 4990-4998. DOI: 10.13057/biodiv/d211102.
- Sutrisno IH, Suwardi AB, Navia ZI, Baihaqi B, Fadhilah MA. 2021. Documentation of the traditional Alas food in Southeast Aceh District, Indonesia. Biodiversitas 22 (8): 3243-3249. DOI: 10.13057/biodiv/d220818.
- Suwardi AB, Mardudi, Navia ZI, Baihaqi, Muntaha. 2021. Documentation of medicinal plants used by Aneuk Jamee tribe in Kota Bahagia Subdistrict, South Aceh, Indonesia. Biodiversitas 22 (1): 2085-4722. DOI: 10.13057/biodiv/d220102.
- Suwardi AB, Navia ZI, Harmawan T, Seprianto, Syamsuardi, Mukhtar E. 2022a. Diversity of wild edible fruit plant species and their threatened status in the Aceh Province, Indonesia. Biodiversitas 23 (3): 13101318. DOI: 10.13057/biodiv/d230315.
- Suwardi AB, Navia ZI, Harmawan T, Syamsuardi, Mukhtar E. 2020. Wild edible fruits generate substantial income for local people of the Gunung Leuser National Park, Aceh Tamiang region. Ethnobot Res Appl 20: 1-13. DOI: 10.32859/era.20.11.1-13.
- Suwardi AB, Navia ZI, Harmawan T, Syamsuardi, Mukhtar E. 2022b. Importance and local conservation of wild edible fruit plants in the East Aceh Region, Indonesia. Intl J Conserv Sci 13 (1): 221-232.
- Syamsuardi, Nurainas, Taufiq A, Harmawan T, Suwardi AB. 2022. Aneuk Jamee traditional foods in the South Aceh District, Indonesia. Biodiversitas 23 (1): 443-454. DOI: 10.13057/biodiv/d230146.
- Tamiru T, Asalfew D. 2016. Ethnobotanical study of medicinal plants of Mirab Badwacho district, Ethiopia. J Biosci Biotechnol 5 (2): 151-158.
- Tantengco OA, Condes MA, Estadilla HH, Ragragio EM. 2018. Ethnobotanical survey of medicinal plants used by Ayta communities in Dinalupihan, Bataan, Philippines. Pharmacog J 10 (5): 859-870. DOI: 10.5530/pj.2018.5.145.
- The Central Bureau of Statistics of East Aceh District. 2021. Serbajadi Subdistrict in Figure 2021. The Central Bureau of Statistics of East Aceh District, Indonesia. [Indonesian]
- Tugume P, Nyakoojo C. 2019. Ethno-pharmacological survey of herbal remedies used in the treatment of paediatric diseases in Buhunga parish, Rukungiri District, Uganda. BMC Complement Altern Med 19: 353. DOI: 10.1186/s12906-019-2763-6.
- Vitalini S, Iriti M, Puricelli C, Ciuchi D, Segale A, Fico G. 2013. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy)-An alpine ethnobotanical study. J Ethnopharmacol 142 (2): 517-529. DOI: 10.1016/j.jep.2012.11.024.
- Weckmüller H, Barriocanal C, Maneja R, Boada M. 2019. Factors affecting traditional medicinal plant knowledge of the Waorani, Ecuador. Sustainability 11: 4460. DOI: 10.3390/su11164460.
- Yineger H, Yewhalaw D, Teketay D. 2008. Ethnomedicinal plant knowledge and practice of the Oromo ethnic group in southwestern Ethiopia. J Ethnobiol Ethnomed 4: 11. DOI: 10.1186/1746-4269-4-11.