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Abstract. Darmawan AA, Ariyanto DP, Basuki TM, Syamsiyah J, Dewi WS. 2022. Biomass accumulation and carbon sequestration 
potential in varying tree species, ages and densities in Gunung Bromo Education Forest, Central Java, Indonesia. Biodiversitas 23: 
5093-5100. Forest biomass plays an important role in carbon storage to mitigate climate change. While many studies have investigated 
the carbon stock of various forests, adding knowledge in the context of education forest might enrich the importance of this forest as a 
carbon pool besides its role for education purposes. Gunung Bromo Education Forest in Karanganyar District, Central Java, Indonesia 

consists of several tree cover types with each type having a different ability to absorb carbon dioxide in the atmosphere. This research 
aimed to determine the accumulation of biomass in Gunung Bromo Education Forest and to investigate the potential for carbon 
sequestration across different tree species, age classes and densities. Three species of tree (i.e. pine, Indonesian rosewood and 
mahogany) with varying ages were measured and calculated the biomass (i.e. tree, litter and understorey) and total carbon sequestration 
potentials (i.e. tree, litter and understorey, and soil organic carbon). This study used purposive sampling method across 9 combinations 
of tree cover type and age classes, each with 3 replication, resulting in a total of 27 sampling points. The results showed pine stands 
planted in 1973 had the highest tree biomass of 461.08 t ha-1 and while the pine agroforest planted in 2016 and Indonesian rosewood 
agroforest planted in 2018 had the lowest tree biomass with 1.02 t ha-1 and 0.39 t ha-1, respectively. Similarly, the pine stands planted in 

1973 had the highest total carbon sequestration of 372.68 t ha-1 and the lowest in the pine agroforest planted in 2016 and Indonesian 
rosewood agroforest planted in 2018 with 187.11 t ha-1 and 193.58 t ha-1 respectively. The results of this study strengthen the common 
agreement in previous carbon studies that tree age strongly affects biomass accumulation and carbon sequestration, in which the older 
the plant, the higher the carbon sequestration potential than that of younger plants. 
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INTRODUCTION 

Future climate change scenarios predict a temperature 

increase of 0.4-2.0oC in 2030 and 1.0-6.0oC in 2070 

(McKenney et al. 2013; Ospina-Noreña et al. 2019; Santiz 

et al. 2016; Saputra and Lee 2021). In the long run, this 

condition could impact ecosystems on the Earth, 

threatening humans and other living organisms. The 
warming climate is mainly caused by the increase in 

atmospheric concentrations of greenhouse gases, one of 

which is carbon dioxide or CO2 (IPCC, 2014; Nunes et al. 

2019). Therefore, a key aspect of mitigating the increase of 

global temperature is by reducing the concentration of CO2 

through carbon sequestration (Grassi et al. 2017). Forest is 

among the largest carbon pools on Earth which also 

provides various benefits for life (Chanlabut and Nahok 

2022; McKenney et al. 2013; Robinson et al. 2013; 

Solomon et al. 2015). 

Forests have various ecosystem services, including the 

provision of materials (e.g. timber, non-timber products) to 

fulfill human needs, water regulation, soil conservation, 

carbon sequestration, habitat of biodiversity and socio-

cultural benefits (e.g. traditional uses, ecotourism) (Fee 

2019). Such ecosystem services are more prominent in the 

tropical region since tropical rainforests host a great level 
of biodiversity as well as store a large amount of carbon 

(Khaine and Woo 2015; McAlpine et al. 2018; Weiskopf et 

al. 2020; Hakkenberg and Goetz 2021). Indonesia is among 

the countries with the largest tropical forest in the world, 

which plays an active role in climate change mitigation by 

preserving its forest as carbon pools (Basuki et al. 2022). 

There are several studies on the theme of forest biomass 

with various land cover types (Li et al. 2021; Moreira and 

Pires 2016). Such studies showed that each land cover type 

and management activity has a different ability to absorb 

carbon dioxide in the atmosphere and sequester carbon in 
the form of living biomass. The management intensity of 
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crops also affects the carbon sequestration capacity (Yin et 

al. 2012). For example, low biomass occurs on agroforestry 

lands when there is tree-cutting activities (Hanberry et al. 

2016; Silva et al. 2020). In addition, biomass is affected by 

the tree stand density, which is closely related to the 

surrounding environmental conditions, both biotic and 

abiotic factors (Bayat et al. 2021; Oliver and Morecroft 

2014; Teshome et al. 2020). The age of the stand also 

affects the biomass and the amount of carbon stored in a 

stand (González-García et al. 2013). The rate of biomass 
accumulation of the stand will continue to increase until a 

certain age and reach its peak before it decreases as the 

stand is over-maturity (Dey et al. 2019). 

Gunung Bromo Education Forest is a state forest for 

special purpose (Kawasan Hutan dengan Tujuan 

Khusus/KHDTK). It is located in Karanganyar District, 

Central Java Province, Indonesia with an area of 126.29 ha. 

It was originally a limited production forest area under the 

management of Perum Perhutani Regional Division of 

Central Java and since April 2018, the Gunung Bromo 

Education Forest has been designated as an education and 
research forest under the management of Sebelas Maret 

University based on the Decree of the Minister of 

Environment and Forestry Republic Indonesia No. 

SK.177/MENLHK/SETJEN/PLS.0/4/2018 (Apriyanto and 

Kusnandar 2020). One of the missions of Gunung Bromo 

Education Forest is to preserve the forest area for 

education, research and development of science and 

technology. To achieve this, it is necessary to do research 

on the biomass contained in Gunung Bromo Education 

Forest as annual inventory data. Therefore, this research 

aimed to determine the accumulation of biomass in Gunung 

Bromo Education Forest and to investigate the potential for 

carbon sequestration across different tree species, age 

classes and densities. 

MATERIALS AND METHODS 

Study area and period 

This research was conducted at Gunung Bromo 

Education Forest, Karanganyar District, Central Java 

Province, Indonesia between July and December 2020. The 
forest is geographically located at 7o34’21.93”-7o35’38.90” 

S and 110o59’40.39”-111o0’49.36” E (Figure 1). It has an 

elevation of 200-337.5 masl with topography undulated to 

hilly. The climate of Gunung Bromo Education Forest 

based on the Schmidt and Ferguson is classified as type C 

(a bit wet). The minimum and maximum air temperatures 

are 16.8oC and 39.8oC, respectively with minimum and 

maximum relative humidity is 57.9% and 81.4%, 

respectively and rain intensity of less than 100 mm/day 

(Darmawan et al. 2021). The land cover at Gunung Bromo 

Education Forest included mixed forest, mahogany, pine, 
pine-mahogany, replanted pine, and former nurseries. The 

land for replanting pine and former nurseries is a moorland 

that until now has been used by the local community for 

the production of peanuts, corn and cassava (Abdillah et al. 

2021).

 
 

 
 
Figure 1. Map of study location of Gunung Bromo Education Forest, Karanganyar, Central Java, Indonesia, with information on tree 
species and stand age 
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Table 1. The species-specific allometric equation to calculate tree biomass 
 

Common name Scientific name Allometric equation Source 

Pine Pinus merkusii AGB= 1.6224D1.1012 Siregar (2007)a 
Mahogany Swietenia mahagony AGB= 0.903 (D2H)0.684 BKPH Wil. XI & MPF II (2009)a 
Indonesian rosewood Dalbergia latifolia AGB=0.746(d2H)0.6399 BKPH Wil. XI & MPF II (2009)a 

Notes: a Krisnawati et al. (2012); AGB: aboveground biomass (kg/tree), d= diameter breast-high (cm), H= total tree height (m) 
 

 
 

Sampling design and data collection 

This study used a purposive sampling method at nine 

sites representing different tree species and planting years 
(i.e. Mahogany 1949, Pine 1973, Pine 1994, Pine 1996, 

Pine 2000, Pine 2003, Pine 2007, Agroforestry Pine 2016, 

and Agroforestry Indonesian rosewood 2016) each with 3 

replicates, resulting in total 27 sampling plots (Figure 1). 

Plots were made using the method followed Ikhsan et al. 

(2021). On each land cover, plot measuring 20 m x 100 m 

and the main sample plot measuring 20 m x 20 m were 

created (Tohirin et al. 2021). 

The tools used in data collection included bamboo 

stakes, ropes, meters, pens, field books, a digital camera, a 

range finder, and Global Positioning System. Carbon from 

biomass analysis was conducted in the Soil Science 
Laboratory, Faculty of Agriculture, Sebelas Maret University. 

Biomass calculation 

Tree density 

Tree density is the number of individuals of each 

species in a unit of area and is calculated as follows 

(Leonika et al. 2021): 
 

 

Tree biomass 

The calculation of tree biomass was carried out using 

allometric equations. This allometric equation is used to 

determine the relationship between the dimension of the 

tree and the dry weight of the tree as a whole (Basuki et al. 

2022). The allometric formula for each species is presented 

in Table 1. 

Litter and understorey biomass 

The litter and understorey biomass was calculated based 
on the total dry weight (DWt) referring to Oraon et al. 

(2018) as follows: 

 

 
 

Where: DWt: total dry weight (kg); DWs: dry weight of 

the example (g); WWs: wet weight of the example (g); 

WWt: total wet weight (kg) 

 Carbon sequestration 
Carbon sequestration was calculated using the formula 

from Zhao et al. (2018): 

 

C = B x % C-organic 

Where: C: carbon content of biomass, expressed in 

kilograms (kg); B: total biomass, expressed in kilograms 

(kg); % C-organic: percentage value of carbon content, 
amounting to 0.47 or using the value of percent carbon 

from laboratory analysis 

 Soil organic carbon 

Soil organic carbon calculation used secondary data 

from previous studies in the form of bulk density values 

using the sample ring method and SOC using the Walkey 

and Black method (Eslamdoust and Sohrabi 2018) as 

follows: 

 

SOC (t ha-1) = bulk density x C-organic (%) x 100 

Statistical analysis 

Data were analyzed with One way ANOVA and LSD 
(Least Significance Different) tests to investigate the 

differences among stand ages and tree species. The 

relationship between biomass parameters, carbon 

sequestration and tree age classes was analyzed using 

regression analysis and correlation test with Fornell-Lacker 

Criterion. Statistical software used in this study included 

Microsoft Excel 2016, Systat 13 and Smart PLS. 

RESULTS AND DISCUSSION 

Aboveground biomass  

Biomass is the amount of organic matter contained in a 

living organism at a certain place and time. The biomass 
measured in this study included tree biomass, litter and 

understorey. Based on the results of the analysis showed 

that tree ages and species had a very significant influence 

on tree biomass, as well as litter and understorey (Table 2). 

The Pine 1973 had the highest tree biomass of 461.08 t ha-1 

and while the AF Pine 2016 and AF Indonesian Rosewood 

2018 had the lowest tree biomass with 1.02 t ha-1 and 0.39 t 

ha-1, respectively. The stands biomass is influenced by age, 

species composition, vegetation density and stand structure, 

as well as environmental factors (Padmakumar et al. 2018; 

Slik et al. 2013). 

The litter and understorey biomass in the Pine 1973 is 
the highest with 9.57t ha-1 and while the lowest was in the 

AF Pine 2016 and AF Indonesian Rosewood 2018 with 

0.29 t ha-1 and 0.16 t ha-1, respectively. In this study, the 

highest litter biomass was produced by the main crop and 

secondary crops. Understorey also contributed to the 

biomass that occurred on the soil surface in each land 

cover. The biomass of litter and understorey is influenced 

by the diversity of plants (Liu et al. 2018). 
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Table 2. Biomass in tree, litter and understorey across various tree cover classes 
 

Tree cover class 
Tree density  

(ind ha-1) 

Stand biomass 

(t ha-1) 

Litter and understorey biomass 

(t ha-1) 

Pine 1973 592 461.08a 9.57a 
Pine 1994 742 222.31bc 5.40bc 
Pine 1996 858 341.55ab 5.42bc 
Pine 2000 608 236.70bc 4.13bc 

Pine 2003 1358 301.00b 3.50c 
Pine 2007 1517 143.11cd 4.07bc 
Mahogany 1949 242 358.98ab 5.91b 
AF Pine 2016 317 1.02d 0.29d 
AF Indonesian Rosewood 2018 258 0.39d 0.16d 

Note: Numbers followed by different letters in the same column indicate a significant difference according to LSD (P=0.05) 

 

 
Table 3. Toral carbon sequestration across various tree cover classes 
 

Tree cover class 

Carbon   

Stands 

(t ha-1) 

Litter and understorey 

(t ha-1) 

Soil 

(t ha-1) 

Total 

(t ha-1) 

Pine 1973 216.71a 4.50a 151.47c 372.68a 
Pine 1994 104.49bc 2.54bc 162.38bc 269.40bc 
Pine 1996 160.53ab 2.55bc 166.55bc 329.63ab 
Pine 2000 111.25bc 1.94bc 163.92bc 277.11bc 
Pine 2003 141.47b 1.65c 157.76bc 300.88bc 

Pine 2007 67.26cd 1.91bc 171.88b 241.05cd 
Mahogany 1949 168.72ab 2.78b 158.81bc 330.31ab 
AF Pine 2016 0.48d 0.13d 186.50a 187.11d 
AF Indonesian Rosewood 2018 0.18d 0.08d 193.32a 193.58d 

Notes: Numbers followed by different letters in the same column indicate a significant difference according to LSD (P=0.05) 
 
 

 

Total carbon sequestration  
The total carbon sequestered in three pools (i.e. tree, 

litter and understorey carbon and soil organic carbon) is 

presented in Table 3. The Pine 1973 had the highest tree 

carbon sequestration with 216.71 t ha-1 and the lowest in 

the AF Pine 2016 and AF Indonesian Rosewood 2018 with 

0.48 t ha-1 and 0.18 t ha-1, respectively. The carbon stored 

in the tree is directly proportional to the biomass content, 

where the higher the amount of biomass, the higher the 

carbon sequestration (Lutz et al. 2018). Pine, Mahogany, 

and Indonesian Rosewood stand in productive age had the 

highest carbon sequestration compared to the juvenile 

period. In addition, it is also influenced by basal area, stem 
volume, and so on (Padmakumar et al. 2018). Erkan and 

Guner (2018) suggest that 50.3% of carbon is stored in 

Pine leaves and the highest carbon content accumulates in 

tree trunks at about 80%. 

Similarly, the Pine 1973 had the highest litter and 

understorey carbon of 4.50 t ha-1 and the lowest in the AF 

Pine 2016 and AF Indonesian Rosewood of 0.13 t ha-1 and 

0.08 t ha-1. The carbon content of litter and understorey is 

influenced by the shape of the stand, the composition of the 

understorey species, soil organic matter, soil temperature, 

soil moisture content, and the quality of the litter on the 
surface of the soil. Changes in carbon in the soil are 

influenced by a combination of increased inputs and 

reduced output within the soil (Na et al. 2021). Carbon 

derived from litter and understorey can be a primary source 

of energy for soil microorganisms, especially decomposer 

microbes (Winsome et al. 2017). 
The soil carbon content in the AF Indonesian 

Rosewood 2018 is not significant with the AF Pine 2016, 

but both are significantly different from other vegetation 

cover classes. The AF Indonesian Rosewood 2018 had the 

highest soil organic carbon with 193.32 t ha-1 followed by 

the AF Pine 2016 with 186.50 t ha-1. The lowest soil carbon 

was recorded in Pine 1973 with 151.47 t ha-1. In general, 

the carbon content in the soil is affected by various factors, 

including soil management. In the AF Pine 2016 and AF 

Indonesian Rosewood 2018, there were plant cultivation 

activities, namely tillage and organic fertilization, so that 

the carbon content in the soil was higher compared to other 
lands. This is in accordance with Edwin (2016) who states 

that the carbon content in the soil can be influenced by the 

intensity of tillage and fertilization activities, where these 

activities can directly or indirectly affect the amount of 

carbon in the soil. 

The total carbon sequestration in Pine 1973 is 

significantly different from another land cover (Table 3). 

The Pine1973 had the highest total carbon sequestration of 

372.68 t ha-1 and the lowest in the AF Pine 2016 and AF 

Indonesian Rosewood 2018 of 187.11 t ha-1 and 193.58 t 

ha-1. The amount of carbon sequestration depends on the 
carbon content above ground and below ground (Na et al. 

2021). Zhang et al. (2018) stated that the amount of carbon 

in land is also influenced by the amount of aboveground 

biomass which then being accumulated in the soil in the 

form of SOC. Abera and Wolde-Meskel (2013) stated that 
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factors that affect the carbon content of land include land 

use, cultivation activities and fertilization. 

Potential carbon sequestration with a tree age-class 

approach 

The potential for carbon sequestration in Gunung 

Bromo Education Forest, Karanganyar District, can be 

divided into several classes based on the species and age of 

the tree. The rationale is that each class of tree species and 

age has different growth rates and biomass accumulation 

potentials. The species of trees in Gunung Bromo 
Education Forest, included Pine, Mahogany and Indonesian 

Rosewood in which these tree species are considered fast-

growing trees, thus the interval of the age class is getting 

smaller. In general, the age interval used has a lifespan of 5 

years, but in some conditions, it can be adjusted to the 

circumstances in the field (Uthbah et al. 2017). Based on 

the results of the study, the potential carbon sequestration 

across tree species and age classes is presented in Table 4. 

Based on Table 4 and Figure 2, tree age class 1 (K1) 

has a carbon sequestration potential of 190.34 t ha-1, K2 of 

241.05 t ha-1, K3 of 288.99 t ha-1, K4 of 299.51 t ha-1, and 
K5 of 351.49 t ha-1. In general, the older the tree, the higher 

the carbon sequestration ability and vice versa. This is 

because carbon absorption is directly proportional to plant 

age, where the older the tree has a larger number of leaves 

than young plants, so carbon absorption in the process of 

photosynthesis increases. Groover et al. (2017) explained 

that each tree species has the ability to sequester carbon so 

that the amount of biomass in the trunk is increasing, 

besides that it is also influenced by the age of the tree, 

growth phase, population density and soil and 

microclimate, which can affect the amount of carbon 

sequestration. Yin et al. (2012) added that the highest 

carbon sequestration in trees is on the trunk with average 

carbon sequestration of about 51.47%. 

Relationship between growth parameters and carbon 

sequestration potential  

The relationship between growth parameters and carbon 

sequestration potential in this study can be seen in Table 5 

and Figure 3. This study shows that age has a very strong 

influence on tree biomass (p=0.851), as well as litter and 

understorey biomass (p=0.704). Furthermore, litter and 
understorey biomass has a strong influence on total carbon 

(p=0.720). In addition, tree biomass has a very strong 

influence on litter and understorey biomass (p= 0.826) and 

has a fairly strong influence on total carbon (p= 0.402). The 

relationship between these parameters can be used as an 

experimental model as presented in Figure 2. 
 
 
 

 
 

Figure 2. Carbon sequestration potential by tree age class 

 
 

Table 4. Potential carbon uptake in varying classes based on tree species and age 
 

Tree cover class Tree age (years) Age interval Tree grade 
Carbon sequestration potential 

(t ha-1) 

AF Indonesian Rosewood 2018 2 1-5 Grade 1 190.34 
AF Pine 2016 4  

Pine 2007 13 11-15 Grade 2 241.05 
Pine 2003 17 16-20 Grade 3 288.95 
Pine 2000 20  
Pine 1996 24 21-30 Grade 4 299.51 
Pine 1994 26  
Pine 1973 47 > 31 Grade 5 351.49 

Mahogany 1949 71   

 
 
 
Table 5. Relationships between growth parameters and carbon sequestration potential 
 

Parameters Age class 
Litter and 

understorey biomass 

Soil organic 

carbon 

Carbon sequestration 

potential 

Tree 

biomass 

Litter and understorey biomass 0.704**     
Soil organic carbon 0.329 0.224    
Carbon sequestration potential 0.395 0.720** 0.138   
Tree biomass 0.851*** 0.826*** 0.227 0.402*  
Tree density -0.021 -0.043 0.279 0.066 -0.102 

Notes: * (significant), *** (very significant) 
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Figure 3. Model depicting the relationship between growth parameters and carbon sequestration potential 
 
 
 

In this study, there are two types of effect of growth 
parameters on the potential for carbon sequestration, 

namely direct effect and indirect effect. Tree age class, tree 

density, tree biomass and SOC directly affected the carbon 

sequestration potential by 17%, 10%, 26.9%, and -0.7%, 

respectively. Tree age class, tree density, tree biomass and 

litter and understorey biomass indirectly affect the carbon 

sequestration potential by 22.6%, -2.3%, -0.1% and -0.2%, 

respectively. However, the relationship of the parameter to 

the carbon sequestration potential is indirectly negative, 

meaning that the parameter is not directly proportional to 

the carbon sequestration potential. Thus, the effect of the 
total parameters of tree age class, tree density, tree 

biomass, litter and understorey biomass, and SOC on the 

potential for carbon sequestration was by 39.6%, 7.7%, 

26.8%, -0.2%, and -0.7%, respectively. 

The potential for carbon sequestration can be influenced 

by various factors. In this study, we focused on the 

influence of several parameters to show their relationship 

with the potential for carbon sequestration in varying tree 

cover types. Gunung Bromo Education Forest has several 

types of tree cover based on the year of planting to 

facilitate our analysis to divide into 5 age classes of trees 

which the older trees had a high carbon sequestration 
potential (Köhl et al. 2017; Sillett et al. 2020; Uthbah et al. 

2017). The age class of trees contributed to carbon biomass 

by 84.9%. Biomass is continuously increasing by 

increasing tree size, emphasizing the important role of old 

trees for carbon sequestration accumulation (Stephenson et 

al. 2014). Furthermore, the potential for carbon 

sequestration is also influenced by tree density (Na et al. 

2021). In our study, tree density had a contribution to tree 

biomass of -8.4%, meaning that it is not directly 

proportional to the age of the tree, as younger trees have a 

higher population compared to older trees. 

Tree density also affected the amount of litter and 
understorey biomass by 4.2% in which the denser the tree, 

the higher the amount of litter produced (Ziegler et al. 

2013). In addition, tree biomass contributes 83% to litter 

and understorey biomass, indicating that the older the tree, 

the more litter is produced (Repo et al. 2021). Litter and 

understorey biomass affects SOC by 22.4% in which the 

litter on the soil surface will be distributed by soil fauna 

into the soil (Darmawan et al. 2021), resulting in an 

increase of SOC in the soil (Cotrufo et al. 2015; Ma et al. 

2018). However, SOC in monoculture plantation forests 

has a lower SOC compared to agroforestry (Hernández et 
al. 2016). This is due to the existence of tillage and the 

addition of organic matter the form of cow manure to 

increase soil fertility in agroforestry. Based on the findings 

of this study, the potential for carbon sequestration is 

influenced by the age of the plant and the density of the 

tree, which affects the amount of tree biomass and litter 

and understorey biomass which is then converted as carbon 

sequestration potential. 

In conclusion, the Pine 1973 had the highest biomass 

accumulation of 470.64 t ha-1 and the lowest in the AF 

Indonesian Rosewood 2018 of 0.55 t ha-1. Similarly, Pine 

1973 also had the highest total carbon sequestration 
capacity with 372.68 t ha-1. Carbon sequestration is 

influenced by the age of the tree and tree density in which 

the older the plant and its high density, the potential for 

carbon sequestration is higher than that of younger plants 

and low density. 
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