Antibiotic resistance of emerging pathogenic bacteria of hybrid grouper farming in Indonesia

INAH ISTIQOMAH1,2, ALIM ISNANSETYO3, MURWANTOKO4, DESY PUTRI HANDAYANI1, YANI NUR’AINI LESTARI5, ARIEF TASLIHAN5, IGUSTI NGURAH PERMANA5, ENDANG WIJAYANTI5

1Department of Fisheries, Faculty of Agriculture, Universitas Gadjah Mada, Jl. Flora, Bulaksumur, Sleman 55281, Yogyakarta, Indonesia
2Tel.: +62-274-551218, *email: indah.ist@ugm.ac.id
4Research Center for Fishery, National Research and Innovation Agency Indonesia. Jl. Habibie Building, Jl. M.H. Thamrin No. 8, Central Jakarta 10340, Jakarta, Indonesia
5Batam Marine Cultivation Center, Ministry of Fisheries and Marine Affairs. Jl. Raya Trans Barelang Jembatan III, Setoko Island, Bulang, Batam 29471, Kepulauan Riau, Indonesia

Manuscript received: 13 March 2023. Revision accepted: 30 May 2023.

Abstract. Istiqomah I, Isnansetyo A, Murwantoko, Handayani DP, Lestari YN, Taslihan A, Permana IGN, Wijayanti E. 2023. Antibiotic resistance of emerging pathogenic bacteria of hybrid grouper farming in Indonesia. Biodiversitas 24: 2493-2501. A hybrid grouper is among the main coastal farming species in Asian countries, yet vibriosis is still a significant issue. Therefore, a knowledge of pathogenic strains responsible for recent hybrid grouper is essential for developing appropriate control measures. The purpose of the study was to describe emerging bacterial pathogens associated with hemorrhagic disorder, skin wounds, and mortality in cantang hybrid grouper farms in Indonesia. A total of 30 bacterial strains were recovered from the kidney of diseased grouper on TCBS agar. Based on the ability to induce clinical signs and mortality of grouper juveniles owing to intraperitoneal bacterial infection at 10⁶ CFU/fish, the bacteria were divided into three groups: pathogenic (n=11), low-pathogenic (n=2), and non-pathogenic (n=17). The pathogenic strains were putatively identified as Photobacterium damselae subsp. Damselae (n=8), Vibrio alginolyticus (n=1), Vibrio harveyi (n=2), and Vibrio azureus (n=2) based on the biochemical characteristics and 16S rRNA and DNA gyrase B subunit gene sequences. The pathogenic bacteria were sensitive to erythromycin, gentamicin, oxytetracycline, and kanamycin. However, it still has various resistant patterns to ampicillin, fosfomycin, chloramphenicol, streptomycin, rifampicin, and enrofloxacin. This study demonstrated the emergence of pathogenic P. damselae subsp. damselae, V. alginolyticus, V. harveyi, and V. azureus in grouper aquaculture in Indonesia with multiple antibiotic resistance, which needed to further studies.

Keywords: 16S rDNA, antibiotic-resistant, DNA gyrase, vibriosis, Vibrio alginolyticus, Vibrio harveyi

INTRODUCTION

Grouper is a significant mariculture species in Asia and the Mediterranean (Cabaleiro et al. 2018; Yan et al. 2020). As a result, hybrid grouper has become the most popular species in Asia (Arrokhman et al. 2017; Yan et al. 2020). However, there have been multiple reports of regular disease outbreaks in hybrid cantang grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) farms in Indonesia, with similar clinical signs of skin hemorrhage and necrosis (Koesharyani and Zafran 2017; Maharikda et al. 2020). In addition, the same cases have been recorded in Malaysia (Mohamad et al. 2019) and China (Zhu et al. 2018).

Vibriosis is one of the emerging diseases in Asian grouper aquaculture (Zhang et al. 2022). More than 85 Vibrio species are responsible for vibriosis (Baker-Austin et al. 2018), 14 of which have been identified in Indonesia (Istiqomah et al. 2020). The causative agents of vibriosis shift irregularly, challenging control (Ina-Salwany et al. 2019). In shrimp cultivation, for example, emerging Vibrio parahaemolyticus (Yingkajorn et al. 2014) and Vibrio campbellii (Dong et al. 2017; Nuidate et al. 2021) have surpassed luminescent Vibrio harveyi (Chrisolite et al. 2008). However, Vibrio harveyi remains prevalent in marine fish farming (Mougin et al. 2021). Photobacterium damselae subsp. damselae is a multilocal pathogen with considerable genetic diversity that has recently emerged in marine fish aquaculture, most notably in rainbow trout, Oncorhynchus mykiss (Walbaum) (Gouife et al. 2022). This pathogen dominated the spatial pattern found in snapper (Lates calcarifer) culture, along with Vibrio alginolyticus, V. harveyi, Vibrio owensii, and Vibrio rotiferianus (Mougin et al. 2021). It is believed that the ability of various virulence factors to adapt (Castillo et al. 2018; Mohamad et al. 2019), as well as massive outbreaks of antibiotic resistance lateral gene transfer (Mohamad et al. 2019; Hoihuan et al. 2021; Yan et al. 2020), is linked to the spread of these emerging pathogens.

Antibiotic resistance in aquaculture is important to mitigate because it can potentially spread resistant microbes to seafood products and the environment worldwide. Antibiotics are being used in modern aquaculture due to their need for high yields (Miller and
Harbottle 2018). However, fish farmers frequently misuse antibiotics to control disease without first determining the type of disease-causing agent (Shao et al. 2020) or to avoid disease by regularly adding it to fish feed (Zhou et al. 2018). Due to these practices, antibiotic residues are present in aquaculture products and the environment, serving as a source of lateral antibiotic resistance gene transfer among aquatic microbes (Chuah et al. 2016). Although little is known about the antibiotic susceptibility of emerging pathogenic *Vibrio* spp. of mariculture in Indonesia, multiple antibiotic-resistant *V. harveyi*, *V. alginolyticus*, *V. parahaemolyticus*, and *P. damselae* subsp. *damselae* strains appear to be on the rise globally (Miller and Harbottle 2018; Matamp and Bhat 2019; Isnansetyo et al. 2022; Petchimuthu et al. 2022). The antibiotic resistance of these emerging pathogens has become a particular stress for the aquaculture industry, particularly in tightening antibiotic use and suggesting other health management methods such as vaccines, immunostimulants, and probiotics. Since the 1990s, vibriosis has been an issue in Indonesian aquaculture. Random cases continue to emerge despite the use of commercial vaccines and different control techniques (Istiqomah et al. 2020). This raises the question of whether or not a novel pathogen caused those instances. Accordingly, this research was initiated to accurately depict the type and characteristics of the current pathogens causing the disease outbreak of hybrid grouper farming in Indonesia and investigate their susceptibility to available antibiotics.

MATERIALS AND METHODS

Fish sampling and bacterial isolation

Fish sampling was undertaken from the hybrid grouper mariculture areas that were reported to have disease outbreaks in Sekupang (Batum), Bulu (Central Java), Panarukan (East Java), and Gerokgak (Bali), Indonesia, in 2017-2022 (Figure 1). Fish with external disease signs such as hemorrhagic, skin lesion, necrosis, fin rod, and moribund stage were selected for bacterial isolation. A total of 25 juveniles and 15 subadult grouper from the hatchery and floating cage net were collected and dissected for bacterial isolation from the kidney. While sampling, the water’s dissolved oxygen concentration, and pH were examined using a water quality checker (Horiba). At the same time, the total vibrio content (colony forming unit count) was confirmed on Thiosulfate Citrate Bile Salts Sucrose(TCBS) agar (Oxoid). Bacteria were inoculated onto TCBS agar and incubated at room temperature for 48 hours for bacterial purification on the same agar. Colonies from the TCBS plate were purified on Tryptone soya agar (Oxoid) medium supplemented with NaCl (3% w/v; TSAS) at room temperature followed by stored in tryptone soya broth (Oxoid) medium supplemented with NaCl and glycerol (3% w/v and 25% v/v; TSBSG) in-80°C for further identification.

Artificial infection of isolated bacteria

A fry of grouper measuring 4-5 cm in length was selected for the bacterial infection experiment. The Postulate Koch test was performed in 10 fish/bacteria by intraperitoneal injection of purified bacteria at 10⁵ CFU/fish. The control fish received a 0.01 mL injection of physiological saline. The infected fish were kept in ozonized sea water with aeration but no feeding. Fish mortality was observed up to ten days after infection. The dead fish was dissected to isolate bacteria from the kidney.

Biochemical and physiological characterization of the pathogenic bacteria

A freshly prepared bacterial culture (24 h) was used for biochemical and physiological characterization. In addition, a standard Gram staining, oxidase, catalase, OF test, and sensitivity to 2,4-diamino-6,7-disopropyl pteridine phosphate (O/129) test based on the MacFaddin (2000) were conducted. The Rapid Biochemical Test based on HiVibrio™ Identification Kit (KB007, Himedia) was used for further bacterial characterization.

16S rRNA and DNA gyrase B subunit gene analysis of the pathogenic bacteria

The bacterial isolates’ genomic DNA was prepared using Wizard genomic DNA isolation kit (Promega). The isolated genome was then amplified using two sets of universal primers for the 16S rRNA gene, 27F (5-AGAGTTTGATCMTGGCTCAG-3) and 1492R (5-TACGTTACCTTGTACGACTT-3) (Isnansetyo and Kamei 2003) or DNA gyrase B subunit gene, UP-1 (5-GAAGTCATCATGACGGTCTGCAYGCGGNNGGNA ARTTY-3) and UP-2r (5-AGCAGGGTGACGATGTCG AGGCCRTCNACRNCGRNCRTGC-3) (Yamamoto and Harayama 1995). The PCR products were developed in a 1.5% gel agarose electrophoresis, followed by agarose gel DNA extraction. Gene sequencing was done with ABI®PRISM® Big dye terminator v3.1 cycle sequencing kit (Applied Biosystems) and ABI 3130 Genetic Analyzer (Applied Biosystems).

Homology search of nucleotide sequence obtained from the sequencing process was done using Basic Local Alignment Search Tool (BLAST) algorithm program (Altschul et al. 1990). Then, the sample gene sequences were aligned with reference sequences from the BLAST results. Next, samples with a more than 97% similarity value were observed using Clustal W Multiple Alignment in the Molecular Evolutionary Genetics Analysis (MEGA) application version 10.0 to create a neighbor-joining phylogenetic tree with bootstraps of 1000 replicates.

Antibiotic susceptibility test

Pathogenic bacteria in the present study were tested on their susceptibilities to antibiotics based on the previously described disc diffusion method (CLSI 2006). Each bacterial strain was cultured on TSA overnight and diluted with PBS for adjustment of turbidity to 0.5 McFarland and spread on Muller-Hinton agar plates (100 um/plate). Antibiotic disc (Advantec) containing; ampicillin (AMP, 25 μg), chloramphenicol (CHL, 30 μg), enrofloxacin (ENR, 25 μg), erythromycin (ERY, 10 μg), gentamicin (GEN, 10 μg), fosfomycin (FOS, 200 μg), kanamycin (KAN, 30 μg), oxytetracycline (OXY, 10 μg), Rifampicin
(RIF, 5 µg) and streptomycin (STR, 254 µg) were arranged on top of the agar plates for overnight incubation in room temperature. The inhibition zone diameter was measured to determine the sensitivity against the antibiotic based on CLSI guidelines (CLSI 2014). The antibiotic resistance pattern of the pathogenic isolates was used to calculate the multiple antibiotic resistance index (MARI) according to the previous study (Gxalo et al. 2021).

RESULTS AND DISCUSSION

Bacterial isolation and infection test
A total of 30 bacterial isolates with a greenish-yellow to yellow appearance on TCBS agar were recovered from diseased fish with symptoms of skin necrosis, fin necrosis, skin hemorrhagic, wound on the skin, and lethargies (Figure 1, Table 1). Yellow colonies grew on TCBS appear as the dominant bacterial type over another greenish one.

The water quality of grouper aquaculture in all fish farms in this study was in good condition (Table 1). Water in fish hatcheries has a dissolved oxygen content of 5.1-6.3 mg/L, a pH of 7.0-7.7, and log total presumptive Vibrio of 2.2-3.6 cfu/mL. The pond water dissolved oxygen content, pH, and log total presumptive Vibrio were 6.0 mg/L, 7.7, and 2.7 cfu/mL. Meanwhile, sea cage culture water observed in this study has a dissolved oxygen content of 5.8-6.9 mg/L, pH 7.7-7.8, and log total presumptive Vibrio of 2.2-2.7 cfu/mL.

Figure 1. Sample of diseased cantang hybrid grouper with skin necrosis (A), fin necrosis (B), skin hemorrhagic (C), and wound on the skin (D) with the bacterial colonies obtained from the fish kidney. Bar = 1 cm

Table 1. Water quality and the number of pathogenic bacterial strains isolated from mariculture farms in Indonesia

<table>
<thead>
<tr>
<th>Sampling site</th>
<th>Water dissolved oxygen (mg/L)/pH/salinity (ppt)/temp, ℃</th>
<th>Vibrio count in water (log cfu/mL)</th>
<th>Num. of isolates (pathogen/total)</th>
<th>Pathogenic isolates (percent of challenge fish mortality, mean time to death in days post-infection)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatchery</td>
<td>5.1/7.7/33/29</td>
<td>2.5</td>
<td>0/1</td>
<td>-</td>
</tr>
<tr>
<td>Cage net 1</td>
<td>6.1/7.7/33/29</td>
<td>2.2</td>
<td>0/1</td>
<td>-</td>
</tr>
<tr>
<td>Cage net 2</td>
<td>5.8/7.8/33/29</td>
<td>2.3</td>
<td>0/1</td>
<td>-</td>
</tr>
<tr>
<td>Central Java</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish pond</td>
<td>6.0/7.7/33/29</td>
<td>2.7</td>
<td>2/7</td>
<td>Vaz JP01 (100,1), Vaz JP07 (100,1)</td>
</tr>
<tr>
<td>East Java</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatchery 1</td>
<td>5.3/7.3/33/29</td>
<td>3.5</td>
<td>2/4</td>
<td>Pdd SB01 (100, 1), Pdd SB06 (100,1)</td>
</tr>
<tr>
<td>Hatchery 2</td>
<td>5.4/7.3/33/29</td>
<td>3.0</td>
<td>1/3</td>
<td>Vh SB25 (60, 1)</td>
</tr>
<tr>
<td>Cage net</td>
<td>6.2/7.8/33/29</td>
<td>2.7</td>
<td>2/3</td>
<td>Pdd SB26 (100, 1), Pdd SB22 (100,1)</td>
</tr>
<tr>
<td>Bali</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatchery1</td>
<td>5.0/7.4/33/29</td>
<td>2.9</td>
<td>2/3</td>
<td>Pdd GD05 (100, 2), Pdd GD06 (100, 2)</td>
</tr>
<tr>
<td>Hatchery2</td>
<td>6.3/7.0/33/29</td>
<td>3.6</td>
<td>2/4</td>
<td>Pdd GD09 (100, 1), Val GD22 (100, 6)</td>
</tr>
<tr>
<td>Cage net</td>
<td>5.9/7.7/33/29</td>
<td>2.4</td>
<td>2/3</td>
<td>Pdd GD34 (100, 3), Vh GD38 (100, 1)</td>
</tr>
<tr>
<td>Total</td>
<td>13/30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *Vaz: Vibrio azareus, Pdd: Photobacterium damselae subspecies damselae, Vh: Vibrio harveyi, Val: Vibrio alginolyticus according to Table 2 and Table 3
An artificial intraperitoneal infection indicated that 13 strains were pathogenic to grouper juveniles based on the ability to develop disease signs and kill the fish species at 100 or 60% of the population in five days post-infection (Table 1). During the infection test, disease symptoms such as hemorrhagic and necrotic of the fins base and skin, kidney swelling, and abdominal bleeding emerged. The symptoms produced by each of these pathogen isolates were mostly identical. Bacteria isolated from the kidneys of moribund fish produced colonies with the same morphology as the initially infected bacteria. Most of these pathogenic bacteria come from hatcheries (54%) and sea cages (31%), while only a small part comes from ponds (16%).

The isolation rate of pathogenic bacteria differs between locations (Figure 2). Pathogenic bacteria were commonly obtained from East Java and Bali, with recovery rates of 40% for P. damsela subsp. damsela and 10% for V. alginolyticus and V. harveyi. Meanwhile, pathogenic V. azureus were collected from diseased fish from the Central Java region with an isolation rate of 29%. Although samples of diseased fish from the Batam region had the same symptoms as those from other regions in the present study, no pathogenic bacteria were obtained.

Characterization and identification of pathogenic bacteria

Phenotypic characterization showed that all pathogenic bacteria in this study grew in TCBS agar medium and formed yellow or greenish-yellow colonies (Table 2). All of these pathogens have the distinctive characteristics of the genus Vibrio, such as being short rod-shaped, Gram-negative, motile fermentative in the OF test, containing catalase and oxidase enzymes, fermenting glucose without producing gas, and sensitive to Vibrio static agent (O129). Biochemical test based on HiVibrio™ Identification Kit (KB007, Himedia) found that all strains were VP negative, able to grow on media with a NaCl content of 1-3%, and unable to use salicin as an energy source. In addition, most of these strains lacked beta-galactosidase (O-nitrophenyl-beta-D-galactopyranoside/ONPG negative), produced ornithine decarboxylase and were unable to use cellobiose as a carbon source. Meanwhile, various responses were shown by the bacterial strains in the arabinose, citrate, and sucrose utilization tests and arginine dihydrolase tests.

DNA isolation, PCR, and sequencing of the bacterial 16S rRNA and DNA gyrase B subunit genes resulted in DNA sequences sizing 874-1,345 bp and 1,045-1,365 bp, respectively (Table 3). A homology search of the genes with the BLAST program on the NCBI website found the proximity of the eight pathogenic bacteria (SB26, SB06, SB01, GD09, SB22, GD05, GD34, GD06) to P. damsela subsp. damsela, with 86%-100% query coverages and 99.2%-100% identities. Meanwhile, two strains (GD38 and SB25) had the highest homology to V. harveyi, with 100% query coverages and 99.4%-99.85% identities. Isolate D22 had the highest homology against V. alginolyticus, while isolates JP01 and JP07 had the highest similarity to V. azureus. The obtained sequences were multiple-aligned with reference genes for the cutting procedure in the same position and size, i.e., 870 bp and 1,052 bp for the 16S rRNA and DNA gyrase B subunit genes, to develop the phylogenetic tree (Figure 3).

Antibiotic resistance pattern of the pathogenic bacteria

The antimicrobial susceptibility of pathogenic bacteria in this study varied. All pathogenic strains were sensitive to erythromycin, gentamicin, oxytetracycline, and kanamycin, while some pathogens were resistant to other antibiotics (Figure 4). For example, in this study, V. alginolyticus strains were resistant to chloramphenicol, streptomycin, rifampicin, and enrofloxacin. In addition, two V. harveyi strains were resistant to ampicillin and enrofloxacin. Furthermore, Photobacterium damsela subsp. damsela were resistant to ampicillin (75% of the strains), chloramphenicol, and rifampicin (25%). Meanwhile, V. azureus resisted ampicillin (50% of the strains) and fosfomycin (100%).

Spatial variations in antibiotic resistance

Antibiotic resistance of pathogenic bacteria varied between locations (Figure 5). A total of two types of resistance were found from Central Java and East Java, while pathogens from Bali demonstrated five types of resistance. Pathogens from Central Java showed resistance to ampicillin (1 strain) and fosfomycin (2 strains). While, pathogens from East Java were resistant to ampicillin (4 strains) and chloramphenicol (1 strain). Pathogens from Bali showed resistance: to ampicillin (4 strains), chloramphenicol (2 strains), streptomycin (1 strain), rifampicin (3 strains), and enrofloxacin (1 strain). However, the multi-antibiotics resistance index (MARI) of pathogens from Central Java, East Java, and Bali were lower than 0.2 and not significantly different between locations (p>0.05). In addition, the MARI was higher in Bali (0.19) than in Central Java (0.13) and East Java (0.09) (Figure 6).

Figure 2. The isolation rate of pathogenic bacteria in each mariculture area in Indonesia. □: Photobacterium damsela subsp. damsela; ■: Vibrio alginolyticus; □: V. azureus; □: V. harveyi
Table 2. Phenotypic characters of pathogenic P. damselae subsp. damselae, Vibrio alginolyticus, Vibrio harveyi, and Vibrio azureus

<table>
<thead>
<tr>
<th>Characters</th>
<th>Photobacterium damselae subsp. damselae*</th>
<th>Vibrio alginolyticus **</th>
<th>V. harveyi ***</th>
<th>V. azureus ****</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colony in TCBS agar</td>
<td>Greenish yellow</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Green</td>
</tr>
<tr>
<td>Luminescence</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cells shape</td>
<td>Short rod</td>
<td>Short rod</td>
<td>Short rod</td>
<td>Short rod</td>
</tr>
<tr>
<td>Gram</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>motility</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oxidation-fermentation test</td>
<td>Fermentative (F)</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Oksidase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Catalase</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glucose utilization</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Gas from glucose fermentation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sucrose utilization</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Arabinose utilization</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Salcin utilization</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cellobiose utilization</td>
<td>(-+)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arginine dihydrolase</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ornithine decarboxylase</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Citrate utilization</td>
<td>(-+)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O-nitrophenyl-beta-D-galactopyranoside (ONPG)</td>
<td>(-+)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Voges Proskauer</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sensitivity to O129</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Note: *: SB26, SB06, SB01, GD09, SB22, GD05, GD34, GD06; **: GD22; ***: GD38, SB25; ****: JP01, JP07; +: all strains are positive; (+): 80% of strains or more are positive; -: All strains are negative; (-+): 80% of strains or more are negative

Table 3. The length of the 16S rRNA and DNA gyrase B subunit genes sequences of the pathogens and the homology to reference

<table>
<thead>
<tr>
<th>Pathogenic bacterial strains</th>
<th>16S rRNA Length (bp)</th>
<th>BLAST (query coverage, identity)</th>
<th>Acc no. of reference</th>
<th>DNA gyrase B subunit Length (bp)</th>
<th>BLAST (query coverage, identity)</th>
<th>Acc no. of reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GD05</td>
<td>874</td>
<td>Photobacterium damselae subsp. damselae KC-Na27-SR1 (100%, 100%)</td>
<td>MN263233.1</td>
<td>1147</td>
<td>Photobacterium damselae V167.1 (100%, 99.8%)</td>
<td>LC37108.1</td>
</tr>
<tr>
<td>GD06</td>
<td>876</td>
<td>Photobacterium damselae strain TV27 (100%, 100%)</td>
<td>MT549173.1</td>
<td>1362</td>
<td>Photobacterium damselae subsp. damselae ATCC33559 (86%, 99.2%)</td>
<td>AY455889.1</td>
</tr>
<tr>
<td>GD09</td>
<td>874</td>
<td>Photobacterium damselae strain TV27 (100%, 99.54%)</td>
<td>MT549173.1</td>
<td>1365</td>
<td>Photobacterium damselae subsp. damselae ATCC33559 (86%, 99.4%)</td>
<td>AY455889.1</td>
</tr>
<tr>
<td>SB01</td>
<td>876</td>
<td>Photobacterium damselae strain QX175062 (100%, 99.89%)</td>
<td>MN310924.1</td>
<td>1358</td>
<td>Photobacterium damselae subsp. damselae ATCC33559 (87%, 99.4%)</td>
<td>AY455889.1</td>
</tr>
<tr>
<td>SB06</td>
<td>876</td>
<td>Photobacterium damselae strain TV27 (100%, 99.66%)</td>
<td>MT549173.1</td>
<td>1045</td>
<td>Photobacterium damselae subsp. damselae V1607-1 (100%, 99.81%)</td>
<td>LC370108.1</td>
</tr>
<tr>
<td>SB22</td>
<td>875</td>
<td>Photobacterium damselae strain TV27 (100%, 99.66%)</td>
<td>MT549173.1</td>
<td>1352</td>
<td>Photobacterium damselae subsp. damselae V1607-1 (100%, 99.78%)</td>
<td>LC370108.1</td>
</tr>
<tr>
<td>SB26</td>
<td>877</td>
<td>Photobacterium damselae strain AS-16-0963-3 (100%, 99.77%)</td>
<td>CP065041.1</td>
<td>1213</td>
<td>Photobacterium damselae ATCC33559 (100%, 99.84%)</td>
<td>AY455889.1</td>
</tr>
<tr>
<td>GD34</td>
<td>876</td>
<td>Photobacterium damselae strain TV27 (100%, 99.77%)</td>
<td>MT549173.1</td>
<td>1212</td>
<td>Photobacterium damselae ATCC33559 (100%, 99.67%)</td>
<td>AY455889.1</td>
</tr>
<tr>
<td>GD22</td>
<td>1179</td>
<td>Vibrio alginolyticus partial 16S rRNA gene (100%, 99.75%)</td>
<td>LN610441.1</td>
<td>1173</td>
<td>Vibrio alginolyticus DX0406 (100%, 99.91%)</td>
<td>EF579676.1</td>
</tr>
<tr>
<td>SB25</td>
<td>1345</td>
<td>Vibrio harveyi XSH1 (100%, 99.78%)</td>
<td>MT071600.1</td>
<td>1356</td>
<td>Vibrio harveyi HQ050226-1 (100%, 99.6%)</td>
<td>GQ232761.1</td>
</tr>
<tr>
<td>GD38</td>
<td>1348</td>
<td>Vibrio harveyi XSH1 (100%, 99.85%)</td>
<td>MT071600.1</td>
<td>1355</td>
<td>Vibrio harveyi a661 (100%, 99.4%)</td>
<td>LR736262.1</td>
</tr>
<tr>
<td>JP01</td>
<td>1298</td>
<td>Vibrio azureus strain LC2-005 (100%, 99.92%)</td>
<td>NR_041683.1</td>
<td>1360</td>
<td>Vibrio azureus LC2-005 (100%, 99.78%)</td>
<td>CP018616.1</td>
</tr>
<tr>
<td>JP07</td>
<td>1296</td>
<td>Vibrio azureus strain LC2-102 (100%, 99.77%)</td>
<td>AB428898.1</td>
<td>1361</td>
<td>Vibrio azureus LC2-005 (100%, 99.85%)</td>
<td>CP018616.1</td>
</tr>
</tbody>
</table>
Figure 3. A. Phylogenetic tree of the 16S rRNA and; B. DNA gyrase B subunit genes of pathogenic bacteria in this study and reference bacteria in the Genbank using the Neighbour-joining method with 1,000 times bootstrapping. *: the strain of the present study.
Figure 4. Antimicrobial resistance pattern of pathogenic strains

Figure 5. Distribution of antibiotic susceptibility of the pathogenic strains

Figure 6. Multi-antibiotic resistance indexes (MARI) in central Java, East Java, and Bali (average ± SE). MARI: number of antibiotics resisted by the bacteria/number of total antibiotics tested (Deng et al. 2020)

Discussion
Disease is an important factor for successful aquaculture. Finfish mariculture in Indonesia is mainly based on grouper and seabass species (La Ode et al. 2015). Hundreds of Vibrio species are found in aquatic environments (Janda 2015). In the present study, we found 13 isolates of pathogenic bacteria from the kidney of diseased Cantang Hybrid Grouper (Epinephelus fascioguttatus ♀ × Epinephelus lanceolatus ♂) with lethargy, skin hemorrhagic, necrosis, fin rot, and mortality in four mariculture areas in Indonesia. The aquaculture condition in the fish farms was good based on the water temperature, pH, salinity, dissolved oxygen, and total Vibrio concentrations parameters (Mustafa et al. 2015). The nucleotide sequences of 16S rRNA and DNA gyrase B subunit regions were highly similar to those of Vibrio harveyi, V. alginolyticus, V. azureus, and Photobacterium damsela subspecies damsela (previously V. damsela) published in the genebank, ranging from 99.66-100% and 98.66-100%, respectively. The results were least different
from previous findings of V. olivaceus, V. alginolyticus, and V. damsela from diseased grouper in Karimunjawa Island, Central Java, Indonesia (Sarjito 2011). Ilmiah et al. (2012) reported the association of V. metschnikovii, V. parahaemolyticus, and V. mimicus with moribund grouper collected from the floating net cage in Barru of Sount Celebes, Indonesia. Recently, V. owensii and V. alginolyticus with multiple antibiotic resistants were reported as potential pathogenic bacteria from Spermonde Archipelago, Indonesia (Islamsetyo et al. 2022). This evidence confirms that the causative agent of vibriosis is shifting in Indonesian mariculture farms.

This study is the first report on the massive infections of Photobacterium damsela subsp. damsela in Indonesia marine aquaculture. The pathogen is a member of the Vibrionaceae family, formerly known as V. damsela (Smith et al. 1981). This bacterial infection in the present study causes hemorrhagic and necrosis on the skin and fin, apparent bleeding of the peritoneal cavity, swelling kidney, and mortality of the hybrid grouper. These signs are consistent with P. damsela subspecies damsela infection in damselfish (Chromis punctipinnis) (Love et al. 1981), giant grouper (Epinephelus lanceolatus) (Jun et al. 2010), seabass (Dicentrarchus labrax) (Mahmoud et al. 2018) and other marine farmed fish (Tao et al. 2018). This pathogen has a 16S rRNA gene similar to the Photobacterium damsela subsp. piscicida but is different phenotypically, especially in motility characteristics, and grows at 37°C (Rivas et al. 2013). There have been no reports of P. damsela subsp. damsela infection in East Java and Bali marine fish farming until 2016 (Istiqomah et al. 2020). Therefore, the incidence of infection with this pathogen in East Java and Bali in the present study in the period of 2017-2022 fulfills the criteria of an emerging pathogen as the first case found in an area with a major impact (Tengs and Rimstad 2017). Furthermore, the isolation rate (40%) in both locations was higher than those of previous V. damsela (14%) in Central Java (Sarjito 2012). That is alarming for fish farmers and stakeholders to take strategic steps to overcome this problem and prevent future unfavorable conditions.

The second emerging pathogen in this study is V. azureus. This bacterium was isolated from the kidney of diseased fish in Central Java with a 29% isolation rate. Vibrio azureus was first published as a new species isolated from seawater in Japan (Yoshizawa et al. 2009). Species similar to V. azureus have been reported from waters (Thongchankaew et al. 2011), the digestive tract of Green mussels (Perna viridis) (Hikimawati et al. 2019) or associated with sponges (Paul et al. 2021). Vibrio azureus has been reported as a potential pathogen causing ulcers in Holothuria scabra (Tangestani and Kunzmann 2019). More recently, this bacterial infection was associated with 28% of hemorrhagic cases in Korea’s red drum fish (Sciaenops ocellatus) farming (Yen et al. 2021). The present study is the first confirmation of V. azureus pathogenicity to Cantang hybrid grouper in Indonesia. It is therefore suggested that further investigation of the pathogenesis and development of control measures for the disease are important.

Antibiotic resistance has increased in aquaculture (Schar et al. 2021) and aquatic organisms (Hossain and Heo 2022) in the last two decades. We found that 13 disease-causing pathogens in Cantang hybrid grouper farming had different resistance patterns to six antibiotics: ampicillin, fosfomycin, chloramphenicol, streptomycin, rifampicin, and enrofloxacin. Even though the spatial multi-antibiotic resistance index (MARI) values of the pathogens in this study were still at a safe level (0.025-0.180). The different resistance patterns of the pathogen in Bali, East Java, and Central Java are susceptible to interactions, along with the free distribution or trading of grouper seeds between provinces in Indonesia (Febriana et al. 2013). Meanwhile, no antibiotic resistance observations were made from Batam since no pathogenic bacteria were found in the area in the present study.

Vibrio harveyi and V. alginolyticus are Indonesia’s most frequently reported pathogens in grouper aquaculture, although the inactivated vaccines for this Vibrio spp were commercially available and used by fish farmers (Istiqomah et al. 2020). Both groups of pathogens still appear in the present surveillance study in Bali with a spatial multi-antibiotic resistance index of 0.180 (greater than other areas). Although the value is close to the safe threshold of 0.2 (Deng et al. 2020), more proper biosecurity steps, such as fish screening and quarantine, are needed to avoid introducing and spreading these pathogens in aquaculture facilities.

It is essential to strengthen antibiotic use control, enhance diagnostic services for the fish farmer, and keep excellent water quality and hygiene practices, along with the improvement of feeding management (Apines-Amar et al. 2012), selective breeding (Yang et al. 2020) or development of other control measures, such as biocontrol or probiotics (Li et al. 2019), enhancement of the host immune by the revitalization of vaccine (Pang et al. 2020) or application of immunostimulant (Kuo et al. 2020). These efforts will prevent horizontal resistant gene transfer from aquaculture to human pathogens (Shen et al. 2019) and prevent the occurrence of multiple antibiotic-resistant strains (MARI>0.2), as has been reported in tilapia (Oreochromis sp.) (Arumugam et al. 2017), white-leg shrimp (Litopenaeus vannamei) (De Silva et al. 2018), and other farmed or wild-caught aquatic animals (Schar et al. 2021).

ACKNOWLEDGEMENTS

The author wishes to thank Bambang Hanggono of BPBAP Situbondo and Zafran of BKRP Gondol for their technical support. We also thank Baharuddin, Aditya Arif, Ms. Rizka Amelia, Ms. Novi Rosmala Dewi, and Ms. Evy Sholehah Afrun for providing valuable help with the husbandry of the live fish throughout the experiment. The Ministry of Research, Technology and Higher Education, Indonesia, supported the study through Hibah Penelitian Terapan Unggulan Perguruan Tinggi (Hibah PTUPT) 2017-2019.

