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ABSTRACT

Djuuna IAF, Abbott LK, Van Niel K (2010) Predicting infectivity of Arbuscular Mycorrhizal fungi from soil variables using Generalized
Additive Models and Generalized Linear Models. Biodiversitas 11: 145-150. The objective of this study was to predict the infectivity of
arbuscular mycorrhizal fungi (AM fungi), from field soil based on soil properties and land use history using generalized additive models
(GAMs) and generalized linear models (GLMs). A total of 291 soil samples from a farm in Western Australia near Wickepin were
collected and used in this study. Nine soil properties, including elevation, pH, EC, total C, total N, P, K, microbial biomass carbon, and
soil texture, and land use history of the farm were used as independent variables, while the percentage of root length colonized (%RLC)
was used as the dependent variable. GAMs parameterized for the percent of root length colonized suggested skewed quadratic responses
to soil pH and microbial biomass carbon; cubic responses to elevation and soil K; and linear responses to soil P, EC and total C. The
strength of the relationship between percent root length colonized by AM fungi and environmental variables showed that only elevation,
total C and microbial biomass carbon had strong relationships. In general, GAMs and GLMs models confirmed the strong relationship
between infectivity of AM fungi (assessed in a glasshouse bioassay for soil collected in summer prior to the first rain of the season) and
soil properties.
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INTRODUCTION

Most agricultural crops are colonized by arbuscular
mycorrhizal fungi (AM fungi), which occur in almost all
soils, but the variability of species abundance differs across
soil types (Abbott and Robson 1991). These fungi are
claimed to be a main component of the soil micro biota in
most agro-ecosystems. Some studies have been done on the
benefit of indigenous AM fungi to the growth of plants in
field soils, but it is difficult to assess the contribution of
these fungi under the field conditions (Fitter 1985;
Jakobsen 1994; Jakobsen et al. 2002).

The infectivity of AM fungi in soil has been found to be
related to agricultural management practices such as (i)
cropping systems (e.g. Thompson 1987; 1991; Bagayoko et
al. 2000; Johnson et al. 1991; Hendrix et al. 1995), (ii)
fertilizer application (e.g. Abbott and Robson 1984;
Thomson et al. 1992; Gryndler et al. 1990; Liu et al. 2000;
Joner 2000), (iii) cultivation (e.g. McGonigle and Miller
2000; Kabir et al. 1997; Johnson and Pfleger 1992; Douds
et al. 1995), and (iv) land use intensity (Oehl et al. 2003;
2004). Agricultural practices are also known to reduce the
abundance and diversity of mycorrhizal fungi (Boerner et
al. 1996; Helgason et al. 1998). However, these
relationships do not always hold.

Statistical modeling is commonly used to test
relationships and to predict species distributions. With
statistical techniques and GIS tools, the development of
predictive habitat models has rapidly increased especially
in ecological studies (Guisan and Zimmermann 2000).
Statistical methods are based on correlation and often have
as their purpose, the aim of prediction.

Soil properties and land use history are the most
important variables which are directly related to the
infectivity of AM fungi. However, the nature and strength
of the relationships between AM fungal infectivity, soil
properties and land use history has not been explored. If
there is a strong relationship, it would be possible to
spatially predict the infectivity of AM fungi in soil based
on soil characteristics and land use variables using
statistical modeling.

A range of data analysis methods can be applied to
develop models for spatial prediction using environmental
correlation. The most common method includes multiple
regression models such as generalized linear modeling
(GLM) (McCullagh and Nelder 1989) and generalized
additive modeling (GAM) (Hastie and Tibshirani 1986;
Yee and Mitchel 1991), which appear to be increasingly
used for predicting species and habitat distribution. These
models have been extensively reviewed by Franklin (1995),
and Guisan and Zimmermann (2000).
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GAMs and GLMs were selected in this study because
these statistical models have been used as an exploratory
tool in the analysis of species distribution with respect to
the environmental factors. GAMs have been used in
numerous studies of species-environment relationships
(e.g., Bio et al. 1998; Austin 1999; Guisan and
Zimmermann 2000). They are considered useful for
exploring the shape of the response function because they
do not assume any general shape of the response prior to
estimation (Austin and Meyer 1996). Bio et al. (1998)
concluded that GAMs are a useful and practical technique
for improving current regression-based vegetation models
by allowing for alternative complex response shapes.
GLMs allow those response functions to be parameterized
and their significance tested (Franklin 1998). GAMs and
GLMs approaches have enabled biologists to model species
responses to a wide range of environmental data types
under a single theoretical and computational framework
(Yee and Mitchell 1991).

The objectives of this study were: (i) to test the strength
and nature of the relationships (using GAM) and, if
possible, predict the infectivity of AM fungi in soil based
on soil characteristic variables and land use history on a
Wickepin farm, and (ii) to model the relative impacts of
land use and soil characteristics at a farm scale.

MATERIALS AND METHODS

Data sets
Soils and land use history data of Wickepin (Djuuna

2006) were used. The 291 sampling points contains records
of 15 data sets determined for each paddock. Each
sampling point covers an area of 150 m2. The infectivity
records of AM fungi from bioassay data such as the
percentage of root length mycorrhiza (%RLC) was used as
response variable (dependent variable), and the following
nine soil variables as predictors (independent variables):
elevation, pH, EC, total C, total N, P, K, soil texture, and
microbial biomass carbon. The selection of the predictor
variables was based on important major factor influencing
AM fungi generally in soil. Correlation coefficient tests
were used to determine if there is any correlation among
the predictor variables. The selected predictor variables
show weak correlation with each other except for total C
and total N. Because of this high correlation between total
C and total N (r=0.91), one of these predictor variables
cannot be used in the modeling. Total N was therefore only
examined for shape and strength of the response in GAM
modeling, but was not included in the stepwise model
development and k-fold cross-validation analysis. Total N
was selected for removal rather than total C, because two
components of N (N-NH4) and N- NO3) were included.

Methods of analysis

Generalized Linear Models and Generalized Additive Models
GAMs were first parameterized using soil

characteristics and land use variables. A smoothing spline
term was used to explore the shape of the response curve

and the strength of the relationship between response
variable (dependent variable) such as %RLC and predictors
(independent variables) i.e. soil characteristics (pH, EC, P
etc). GLMs were parameterized for all variables using the
response functions suggested by the GAMs (Franklin
1998). The interactions of variables were evaluated for
significance in the GLMs. All variables were tested for
significance using forward and backward stepwise
selection, with response curves at different levels of
complexity for each variable. The stepwise model selection
procedure was started with the full model, and then at each
step, one independent variable was tested for omitting and
re-introducing to the model (Pearce and Ferrier 2000).
Variables in the GLMs were tested for significance and
deleted if not significance (backward elimination). The
backward elimination is one of the procedures to be used in
the model which is most powerful for fitting models to
designed experimental situations (Nicholls 1989). In
addition, the forward stepwise procedure is useful for
exploratory model building. The model that had the lowest
value for Akaike’s Information Criterion (AIC) was kept.
The selection stopped when there was no independent
variable addition or omission that would lower the AIC
value. Statistical analyses were carried out using the S-Plus
version 6.2 for Windows.

Goodness of-fit
The model fit and significance of the variables were

evaluated using the residual deviance (analogous to the
residual sum of squares in the linear model). The residual
deviance can be compared with analysis of variance using a
x2- test.

Model evaluation
The GAM and GLM models obtained from stepwise

selection for infectivity of AM fungi were compared and
evaluated in terms of discrimination using the Area Under
the receiver operator Curve (AUC). This method provides a
threshold-independent evaluation of the predictive
performance of models than traditional comparison of
relative error (Bradley 1997; Duda et al. 2001).

Cross validation
Model power and stability was evaluated using a k-fold

cross-validation method (Fielding and Bell 1997). This
method provides insight to the predictive power of the
model, by measuring how well models developed from
different data segments predict the omitted data. It gives a
reasonable estimation of how well the model would
perform on new data and can point to model instability.
Data were randomly split into 10 equal-size groups. At
each iteration, 9 of the 10 groups were used to build the
model, and the other group was used as an independent
validation set to evaluate the performance. This method
was repeated 10 times. As a measure of how well the
model predicts unknown data, the mean prediction error
and the variance in the prediction error were also calculated
across all iterations. Mean prediction error provides
information on how well all models performed, while the
variance gives insight to model instability.
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RESULTS AND DISCUSSION

GAMs and GLMs: Variable selection and response curves
Regarding the different response shapes between soil

variables and the percentage of root length colonized by
AM fungi, GAMs parameterized for root length mycorrhiza
suggested skewed quadratic responses to soil pH, NH4-N
NO3--N and microbial biomass carbon; cubic responses to
soil K, soil P and EC; and linear responses to elevation,
total carbon, C/N ratio, clay and silt as well as the land use
history (pasture). These results show that there is a
tendency of a strong relationship between some soil
variables and the root length colonized by AM fungi,
especially for the linear response shapes. For example,
elevation and total carbon showed negative linear
relationships with percentage root length colonized by AM
fungi. This indicates that the infectivity of AM fungi varies
with elevation and total carbon distribution in the soil.
However, percent clay and silt showed positive linear
relationship to infectivity. Based on the distribution of soil
types on the farm, sandy soils were more common at higher
elevation, and this corresponded with lower infectivity. The
different response shapes between soil variables and the
total mycorrhizal root length, GAMs parameterized for
total mycorrhizal root length suggested skewed quadratic
responses to NH4-N, soil pH, EC, C/N ratio and microbial
biomass carbon; cubic response to elevation; and linear
responses to NO3-N, total carbon, soil P and soil K. In
general, the strength of the relationships between
percentage root length colonized by AM fungi and soil
properties on this farm showed that some soil properties
had little influence on the infectivity of AM fungi. In
general, the GAM models demonstrated that total
mycorrhizal root length was not influenced by some of the
soil properties, including NH4, NO3, P, pH, K and EC. This
result contradicts that from greenhouse studies which have
found strong explanatory relationships between P and the
infectivity of AM fungi (e.g. Abbott and Robson 1982;
Bolan 1991; Marschner and Dell 1994: Ryan et al. 2004;
Thomson et al. 1992; Vejsadova et al. 1989). However, the
past studies have focused on a small range of P at low
levels (0-60 mg.kg) compared to those found at the
Wickepin farm (11-500 mg/kg). The shape of the response
curve within the range of previous studies for P and %RLC
is in agreement with these findings, displaying a reasonably
tight fit around these levels of P with decreasing AM fungi
infectivity with increasing P. In addition, there was a
reasonably strong negative relationship between elevation
and percentage root length. This relationship may be
explained by higher soil moisture levels at lower elevations
as well as a deeper soil profile. Percentage and total
mycorrhizal root length also increased with increase in total
N but decreased with increase in C.

The summary of the shape of response functions for
each soil variable and land use history for %RLC is
presented in Table 1. Among the response variables,
elevation, microbial biomass carbon and total C showed
significant correlations (p<0.05) with %RLC for the GAM
model. This was also similar to %RLC of the GLM model.
The significant relationships for %RLC, for example with

elevation, were generally linear, although some of the weak
relationships were skewed quadratic (e.g. pH).

Table 1. Summary of the shape of response functions for each
soil variables and land use history for %RLC

Response
function

Eleva-
tion

Land
use pH EC Total

C P K MBC

RLC (n=291)
GAMs
Linear 1 1 0 1 1 0 0 0
Piecewise linear 0 1 0 0 0 0 0 0
Skewed quadratic 0 0 1 0 0 0 1 1
Bimodal 0 0 0 0 0 0 0 0
No relationship 0 0 0 0 0 1 1 1
GLM
Significant 1 1 0 0 1 1 0 0

Note: 1 = Presence, 0 = Absence

The deviance from the GAM and GLM models
obtained by stepwise analysis is summarized in Table 2.
Both the GAM and GLM models had similar values of
residual deviance and the null deviance. However, the
residual deviance of GAM models for %RLC were lower
than the GLM models, showing that the GAM models had
slightly better model fits. The GAM models explained 14%
of the variation in %RLC while the GLM models only
explained 6.5%. These outcomes show that although others
have found strong relationships with soil properties and
mycorrhizal colonization, these relationships may not be
evident in field data.

The final models from the stepwise selection method
and the model evaluation are shown in Table 3. The GAM
model for %RLC had the best AUC value (0.61) while all
models had the same kappa (pk) value (0.50). The
explanatory variables selected for the final GAM and GLM
models were very similar with only minor differences. The
most frequently selected explanatory variables were
elevation, land use, total carbon, soil P, soil K, microbial
biomass carbon and soil pH. However, the weakness of the
relationship with P, as discussed earlier, along with other
evident but weak relationships (e.g. elevation) is
demonstrated in the weak predictive power of all four
models.

Results based on the 10-fold cross-validation are
presented in Table 4. The mean prediction error for %RLC
differed for GAM and GLM. However, mean prediction
error of the GLM models was lower than that of the GAM
model. This may indicate that although GAMs had a better
fit, across all iterations they may be over fitted and unable
to generalize to unknown data. However, the AUC values
for the GAM model for %RLC indicate that the final GAM
model selected was reasonably good at predicting unknown
data.

In general, the regression models of GAM and GLM
developed in this study provide insight to the nature of the
relationship between AM fungi and environmental factors
in the field. However, they were not good predictors of AM
fungi infectivity. These prediction models mainly depend
on environmental variables such as soil properties and land
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use features. As some soil properties had low correlation
with the infectivity of AM fungi, the GAM and GLM
models were influenced by these relationships. This is
supported by some studies which investigated how the
variation in response variable would influence the outcome
of the model (Pearce and Ferrier 2000; Pearce et al. 2001).

In the GAM response curve, there was a linear
relationship between the infectivity of AM fungi and
environmental and soil properties such as elevation, total
carbon, C/N ratio, soil P, EC, soil K and NO3. Among these
predictor variables, soil P is only the major nutrient that
was expected to directly influence AM fungi status in the
soil.

It is generally accepted that the beneficial effects of AM
fungi decrease as the supply of P increases (Abbott and
Robson 1984). Previous studies have found that very high
and very low levels of soil P reduced AM fungi
colonization (e.g. Koide and Li 1990). However, these
studies have investigated a smaller range of P, with much
lower values than found at this site. There is some evidence
in the GAM response curves that the relationship found by
others between %RLC and P may be identified within the
known range.

Generalized additive modeling is a powerful tool to
facilitate choice of a possible response shape without
having to assume any particular relationships between the
dependent and independent variables (Shipley and Hunt
1996). However, most of the relationships were found to be
linear. The linear response curves of some soil properties
were not followed with the significant correlation with the
infectivity of AM fungi. Elevation, total carbon and soil
microbial biomass carbon showed significantly correlations

(p<0.05) with %RLC in the GAM and GLM models. These
results indicated that these three factors were better
predictors of the infectivity of AM fungi in the soil than
other soil properties.

Elevation was an important factor in this field study
because it predicted the infectivity of AM fungi better than
other soil properties. This result might be correlated with
the soil moisture depth of the soil profile, as at low
elevations the infectivity of AM fungi was higher.
Different elevation can cause a different moisture content
of soils, because soil water has a characteristic of potential
gravity. That is mean the water tend to move to the lower
part or low elevation. Consequently, the moisture content
of the upper elevation is more dry than on the lower
elevation. There have been no other agricultural studies
which have identified the influence of elevation on the
status of AM fungi in the soil. However, in tropical
rainforest, Meyer (1973) hypothesized that lower elevation
of forest trees are predominantly by AM fungi, while at
higher elevations mostly found the ectomycorrhizal. As
noted by Read (2002), tropical grasslands are
predominantly by AM fungi, while in the deserts areas are
dominated by AM fungi plants with occasional
ectomycorrhizal trees. In addition, in more temperate
regions, at low elevations, grasslands are also dominated by
AM fungi with some individual of ectomycorrhizal trees.
These broader ecological studies may have little relevance
to the local landscape at the farm at Wickepin however,
where low agricultural plant diversity occurs.

The final GAM model was chosen from the stepwise-
selected models based on their performance assessed
through cross-validation. More than a half of the soil

Table 2. Summary of GAM and GLM final models of the infectivity of AM fungi from soil characteristics and land use history.

GAM GLMInfectivity
of AM Fungi n of

observation
Null

deviance
Residual
deviance

Residual degree
of freedom

n of
variables

Residual
deviance

Residual degree of
freedom

n of
variables

%RLC 291 289.16 248.64 255 10 270.26 272 10

Table 3. The final models and their model evaluation parameters

Infectivity
of AM Fungi Model Terms AUC pk

%RLC GAM Land use + s (elevation)+s (NO3)+s (TotalC)+s (P)+s (K)+s (MBC) 0.61 0.50
GLM Elevation + Total-C + C/N + P + MBC + I (totalC^2)+I (C/N^2) 0.55 0.50

Table 4. Cross validation results of GAM and GLM models of the infectivity of AM fungi from soil characteristics and land use history
(K=10 replicates; SQRT= Square root)

GAM GLM

Infectivity
of AM fungi

n of
observation

Mean
prediction

error

SQRT
variance

prediction
error

Mean log
prediction

error

SQRT
log variance
prediction

error

Mean
prediction

error

SQRT
variance

prediction
error

Mean log
prediction

error

SQRT
log variance
prediction

error
%RLC 291 1593.35 19.03 1.69 0.02 211.88 16.40 0.80 0.005
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properties were able to predict the %RLC. However, the
ROC analysis, which was used to assess the expected
performance of the GAM model, was rather low for %RLC
as the AUC value was lower than 0.7%. Similar results
were also shown for the GLM model with a low AUC
value.

The infectivity of AM fungi has previously been found
to depend partly on soil characteristics and the
environment. This study, however, has shown either a lack
of relationship (e.g. with P) or a contradictory relationship
(e.g. with C) to those found in glasshouse experiments.
There may be various reasons for this for the marked
differences between this field study and that of previous
glasshouse studies. The outcomes in this study may be due
primarily to driving factors which have not been considered
or included in these models. Field experiments do not allow
for control of a number of factors, including unknown
environmental and historical (including climatic and
weather) influences. Certain findings (such as the
relationship with P) may have been affected by the
inclusion of fertilizer in field samples. However, it is also
possible that clear relationships in glasshouse studies may
not be directly applicable to the field, where competing
influences may interact and impact both the strength and
nature of relationships.

This study suggests that some soil properties and land
use variables could be used as predictor variables to predict
the infectivity of AM fungi. Further investigation is
required to develop models with good predictive power,
including the selection of explanatory variables. However,
this study has demonstrated that predictive modeling using
standard statistical regression procedures can be applied to
studies of AM fungi.

CONCLUSION

This study found that soil properties (i.e. total carbon,
phosphorus, potassium, nitrate, soil pH, and microbial
biomass carbon) and land use tended to have weak linear
relationships with %RLC on a sheep-cropping farm at
Wickepin in Western Australia. The relationship with
elevation was again supported in this analysis. Further
study is necessary into the potential direct drivers of
infectivity in paddocks, for which elevation was a weak
surrogate. This study demonstrated that a generalized
additive model and a generalized linear model are useful
tools to study the nature and strength of the relationships
between environmental and land use variables and the
infectivity of AM fungi.
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