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Abstract. Nursamsi I, Partasasmita R, Cundaningsih N, Ramadhani HS. 2018. Modeling the predicted suitable habitat distribution of 
Javan hawk-eagle Nisaetus bartelsi in the Java Island, Indonesia. Biodiversitas 19: 1539-1551. Javan hawk-eagle (Nisaetus bartelsi) is 
an endemic raptor of Java Island. The conservation status of Javan hawk-eagle (JHE) according to IUCN is endangered (EN) and 
included in CITES Appendix II list, and this species is also protected by the Indonesian government law based on act no. 5, year 1990. 
The position of Javan hawk-eagle as a top predator is now very threatened by habitat fragmentation, wildlife trade, and the declining 
quality of its habitat. The primary purpose of this study was to give preliminary information about the distribution of predicted suitable 
habitat for JHE as a means of finding potential releasing sites, as an evaluation for habitat protection, and even as an option for the 
development of new JHE protected areas. However, mapping the spatial distribution of potential habitat for JHE using terrestrial survey 
is problematic because it requires enormous time, fund, and human resources. The most possible approach is by using Ecological Niche 
Modeling (ENM)/species distribution modeling (SDM). In this study, modeling exercise was conducted by using a maximum entropy 
method as an adaptation from Maxent software ver. 3.4.1, with the utilization of JHE-nest coordinate data and 16 environmental 
variables datasets as the main input. The predicted suitable habitat distribution map has shown a good match with historical and present 
records of JHE and has fairly succeeded in capturing a wide range of habitat patches from tiny spots to quite large suitable habitat. 
Modeling results also showed that altitude, annual mean temperature, and two types of land cover (closed shrub, and forest area) are 
considered to be most important variables affecting the distribution of potential habitat for JHE. Moreover, about 17.77% (23,209 km2) 
area of Java Island has been projected to be suitable for Havan Hawk-Eagle's habitat, which mostly spread in mountainous areas while 
also appear in several lowland areas. This study suggests the importance of topographic, climatic, and land cover as pivotal predictors in 
determining the suitability of habitat for JHE. This study also shows that the modeling results have a good match with the historical 
records of JHE across the island, which suggests the overall accuracy of the model.
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INTRODUCTION 

Biogeographic regions with a significant reservoir of 
biodiversity, known by the term “biodiversity hotspots," 
cover only 2.3% of the earth’s land surface but host 42% of 
the world’s vertebrates (Jha and Bawa 2006). Currently, 
none of these hotspots have more than one-third of its 
pristine habitat left, and all these whole regions face 
deforestation threat caused by human population growth 
and development; this pressure being exceptionally high in 
the tropical regions (Brooks et al. 2002). The tropical 
rainforests in Sundaland are part of the biodiversity 
hotspot. Sundaland is one part of the country of Indonesia 
with a high diversity of bird species, with the highest rates 
of deforestation in East Asia (Giam et al. 2011). The high 
biodiversity in Java is concentrated only in certain areas, 
and this is because it is strongly influenced by the extreme 
population growth and deforestation (Miettinen et al. 2011; 
Partasasmita 2009; Safana et al. 2018). 

The response of species in areas threatened by 
deforestation is important to know (John and Skorupa 

1987). While some species may be able to positively adapt 
to landscape changes made by human (Sodhi et al. 2010; 
Partasasmita et al. 2009), for most, the landscape changes 
that lead to decreased quality of habitat adversely affect the 
survival of the species (Fahrig 2007). In the effort to develop 
a conservation plan for the species threatened by 
deforestation and changes in habitat quality, the collection 
of data on their habitat preferences, as well as the 
availability of suitable habitats in an area, is vital (John and 
Skopura 1987). Conservation methods to assess the 
suitability of habitat for the species has grown to be able to 
build a model which relates species distribution to 
environmental characteristics (Guisan et al. 2006). The 
model could be a useful tool in the selection of protected 
areas for maximizing biodiversity conservation (Rodriguez 
et al. 2007). 

Javan hawk-eagle (Nisaetus bartelsi) is an endemic 
raptor of Java Island which is currently severely threatened 
by both wildlife trade and habitat loss. Javan hawk-eagle 
(JHE) became one of the most endangered raptors in 
Indonesia (Rakhman 2012; Partasasmita et al. 2016); 



 BIODIVERSITAS 19 (4): 1539-1551, July 2018 

 

1540 

consequently, Javan hawk-eagles are classified as 
'Endangered' (EN) on the IUCN Red List and listed in 
Appendix II of CITES. Despite Javan hawk-eagles facing a 
severe threat to its existence, our knowledge of their habitat 
preferences and the distribution of its habitats in Java 
Island is limited. Various attempts to mapping the habitat 
distribution of Javan hawk-eagles habitats were limited 
only to recording occupied habitat; therefore data about 
habitat suitability for Javan hawk-eagle are often neglected. 
However, collecting these data through direct field surveys 
will require enormous human resources, funding, and time, 
then a different approach is needed.  

In the last few decades, attention toward understanding 
the characteristics of preferred habitat of certain species 
and the distribution of potentially suitable habitat leads to a 
marked increase of interest in the use of Ecological Niche 
Modeling (ENM) (Merow et al. 2013; Fourcade et al. 
2014). ENM, also known as Species Distribution Modeling 
(SDM), which was developed in the mid-1980 (Booth et al. 
2014), comprehensively involving the utilization of 
statistic, ecology, Geographic Information System (GIS), 
and even Remote Sensing (RS) to develop estimation of 
suitable niche for species across predefined landscapes 
(Franklin and Miller 2009), while also can be extrapolated 
through different space and time (Guissan and Thuiller 
2005; Elith and Leathwick 2009; Franklind and Miller 
2009). This modeling will be useful for JHE conservation 
efforts as a means of finding potential releasing sites, as an 
evaluation for habitat protection, and even as an option for 
the development of new JHE protected areas.  

Such modeling can be conducted using a variety of 
alternatives, including heuristic models (e.g., BIOCLIM—
Beaumont and Hughes 2007), combinatorial optimization 
(e.g. GARP-Fitzpatrick et al. 2007), statistical models (e.g. 
GAMs-Jensen et al. 2008), and machine learning (e.g. 
ANN— Ostendorf et al. 2001; Berry et al. 2002; Harrison 
et al. 2006; MAXENT—Phillips et al. 2006) (Sinclair et al. 
2010). Each of these approaches, indeed, has their 
advantages and disadvantages. Nevertheless, one of the 
most growing approaches of ENM is through the use of 
Maximum Entropy (Maxent) algorithms (Belgacem and 
Louhaichi 2013). Maxent modeling has a high potential for 
identifying distributions and habitat selection of wildlife 
given its reliance on only presence locations and has shown 
higher predictive accuracy than many other methods 
(Phillips et al. 2006; Baldwin 2009; Franklin and Miller 
2009; Elith and Frankling 2013; Peterson et al. 2011; 
Remya et al. 2015). Being a general-purpose machine 
learning method, Maxent offers a precise and straight 
forward mathematical formulation to characterize 
probability distribution across a user-defined landscape 
(Phillips et al. 2006; Merow et al. 2013). Maxent is a 
software package which was developed for ENM/SDM 
given presence-only species records (without the need of 
absence data) and a “background” sample of environments 
in the region of interest (Phillips et al. 2006; Phillips and 
Dudık 2008). Therefore, we refer to this type of data 
requirements as “Presence-Background” (PB) data.  

In general, Maxent works by applying the maximum 
entropy principle (Jaynes 1957) to fit the model so that the 
estimated distribution diverges from a uniform distribution 

as minimally as required to explain the observations 
(Guillera-Arroita 2014). Elith et al. (2011) have explained 
this software intuitively from a statistical point of view by 
looking at the environmental domain, even though the 
algorithm within this software works in geographic space 
(Philips et al. 2006). Herewith, we try to follow this 
interpretation to explain this software briefly. PB data are 
used to obtain a set of environmental characteristics at the 
presence site of species and at background location of 
study (which are a regular or random sample of the 
landscape or could be intended to match the recognized 
biases in the sampling process). Otherwise stated, Maxent 
examines the ratio of ƒ1/ƒ, where ƒ1 is the probability 
distribution defining the characteristic of sites wherein the 
species occurs, and ƒ is the probability distribution 
depicting the environmental attributes of the sites wherein 
the species is absent (y = 0) and present (y = 1). This ratio 
corresponds to the probability of presence given the 
environmental covariates ȥ, thus Pr (y = 1|ȥ) = ψ (ȥ), but the 
scaling factor (the prevalence of the species over the 
landscape, Pr (y = 1) = ) cannot be identified from PB 
data only (Elith et al. 2011; Hatic and Fithian 2013; 
Phillips and Elith 2013; Guillera-Arroita 2014). The simple 
output or the ‘raw output’ of Maxent is the estimate of ƒ1/ƒ 
scaled to sum to 1 over the fitted background and 
representing the probability distribution over sites x, given 
the species exist at site x; Pr (x|y = 1) (Phillips et al. 2006). 
Therefore, as currently implemented, that raw output 
represents ψ (ȥ)/ (n. ), where n is the total number of 
points in the background sample. Nonetheless, the raw 
output only represents relative suitability, as it is 
proportional to inhabitancy probabilities by a factor that is 
not identifiable without external data (Guillera-Arroita 
2014).  

With the purpose of estimating the ratio ƒ1/ƒ, Maxent 
fits an exponential model so that log (ƒ1/ƒ) = η (ȥ), where η 
(ȥ) is a linear term of a set of features. Features, which in 
Maxent can belong to six classes (i.e., linear, product, 
quadratic, hinge, threshold, and categorical), represent a 
broaden set of transformations of the covariates (Phillips 
and Dudik 2008). Moreover, features offer a great 
flexibility to fit complex environmental relationship, and 
Maxent utilizes regulation to control the trade-off between 
model complexity and model fit as a means to avoid 
overfitting (Guillera-Arroita 2014). Nevertheless, instead 
of working with Maxent's "raw output," it is more common 
for users to work with "logistic output." Using a logistic 
transformation which based on a user-specified parameter 
‘tau,' this output scales the raw values into a scale of 
relative suitability ranging between 0 and 1 (Elith et al. 
2011). This parameter is the prevalence for sites with 
‘average’ environmental conditions under ƒ1 and by default 
is set to an arbitrary value (τ = 0.5) (Elith et al. 2011). 
Therefore, the output represents the probability of the 
species occurs on each location/sites or can be interpreted 
as a probability of suitable habitat for the species based on 
the environmental variables included in the model. 

This study was then conducted as an attempt to model 
the distribution of potential habitat for JHE across the Java 
Island, while also tried to understand the environmental 
characteristics of preferred habitat based on the available 
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environmental variables. Climatic, topographic, Land use/ 
Land cover, and NDVI are variables used as predictors in 
determining the distribution of potential habitat suitability. 

MATERIALS AND METHODS 

Study sites 
This study was carried out in Java Island which has 

been known as one of the 25 identified biodiversity 
hotspots by Myers et al. (2000), overlapped with the four 
closest biologically richest hotspots such as Indo-Burma, 
Peninsular Malaysia, Wallacea, and The Philippines. The 
field survey was conducted from February until December 
2016 at nineteen locations across the Island, that we 
considered being representative of the niche breadth of the 
JHE based on reports from Sözer and Nijman (1924), 
Setiadi et al. (2000), and Prawiradilaga (2006). Field data 
collection was conducted to collect coordinate points of 
every JHE's nesting sites that were observed. 

Java Island has approximately 133,930 km2 of land 
area, with its altitude ranges from 0 m asl to about 3,676 m 
asl (meter above sea level). All of the locality points were 
collected both in the lowland and highland areas of Java. 
This island, like other areas in the equatorial zone, has only 
two seasons: wet season (during October-April) and Dry 
Season (during May-September). Java Island has a wide 
range of precipitation divided into different categories of 
the area. The western region of Java (Banten and West Java 
Provinces) and Central region of Java (Central Java and 
Special Region of Yogyakarta) have the same average 
rainfall at about 2,000 mm per year, but in some 
mountainous areas in western Java the number could reach 
up to 3,000-5,000 mm per year. Eastern area of Java, 
compared to the western region, has a less rate of 
precipitation at about 1900 mm per year (Qian et al. 2010). 
Likewise, the average temperature in Java can be ranged 
differently according to its altitude feature. Coastal areas 
have average temperature between 220C and 320C, while in 

higher areas with an altitude of between 400 and 1350 m 
asl, the average temperature ranges between 180C and  
290C. Higher altitude generally means a lower range of 
temperature, in this case, the lowest temperature in Java 
Island can reach minus 40C which was recorded in Ranu 
Pani area (slopes of Mount Semeru) (Hariyati et al. 2013). 

 

Procedures 
Field data collection 

Occurrence points of JHE were compiled from two 
primary sources, i.e., field survey and historical database. 
Field survey, aiming to collect the locality data of JHE's 
nest coordinates, was conducted by visiting sites mentioned 
above accompanied by local ornithologist or student who 
acknowledged the exact location of JHE's nest. The 
observation was conducted at a safe distance of about 50-
70 meters from the nest-tree of the bird, and coordinates 
were taken using GPS handheld receiver (Garmin© eTrex 
30). To determine the exact coordinate of the nest, we 
recorded the direction from observation point to the nest 
tree using a compass (Suunto© A-10 NH) and the distance 
between the nest tree and the observation point we took. 
These data were then used to adjust the position recorded at 
the observation point to the nest point using QuantumGIS 
ver 2.6 software. A total of 31 occurrence points were 
collected during this field survey. 

The second source of occurrence points were collected 
from the Global Biodiversity Information Facility (GBIF 
2017) database, which provides freely accessible occurrence 
points in its website (http://www.gbif.org) and birdlife 
database (http://www.birdlife.org/datazone/speciesfactsheet). 
From these databases, we collected occurrence points that 
were recorded no older than 2010 and recorded by human 
observation (not specimen records). All of the occurrence 
points were then carefully verified, and errors that may 
occur were corrected using Google Earth software (Google 
Earth Pro 2017). Indeed, strong geographic sampling biases 
may often present in such database which were derived 

 
 
 

 
 
Figure 1. Study site and survey location of N. bartelsi across Java Island: Green points are surveyed locations. (Base map: Google 
Physical Maps, 2014) 
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from opportunistic observation and collection of records 
(Stolar and Nielsen 2014). Therefore, sampling bias 
correction is highly important and strongly advised to be 
conducted to minimize its strong influence on modeling 
prediction ability and later interpretation (Fourcade et al. 
2013; Kramer-schadt et al. 2013; Fourcade et al. 2014). In 
their study, Fourcade et al. (2014) explained four types of 
biases that might be contained in such datasets, and then 
proposed five option methods of sampling bias correction 
which were carefully designed to overcome or minimize 
the effect of those biases. Subsequently, after identifying 
the type of sampling data biases contained in our 
occurrence data, we conducted two out of five sampling 
bias correction methods, i.e., (i) spatial filtering, performed 
by creating a grid of 3 km x 3 km cell size and randomly 
select only one point of occurrence per grid cell. 
Nonetheless, it should be noted that the size of this grid is 
not the representation of approximate species' dispersal 
capabilities, but rather as a result of modifying the 10-km 
radius rule of spatial filtering proposed by Kramer-Schadt 
et al. (2013) and Boria et al. (2014). The grid creation and 
point selections were conducted using QuantumGIS 
software ver. 2.18.14 (QGIS Development Team 2017). ii) 
Bias file creation, bias file is a probability surface 
represented by cell value which reflects the intensity of 
sampling effort across the area of study and gives a gradual 
weight to random background data used for modeling 
(Fourcade et al. 2014). Bias file can be artificially 
estimated using the aggregation of occurrences from 
closely related species (Phillips et al. 2009). However, in 
the real situation, this information is limited. Therefore, by 
following Elith et al. (2010), we produced a Gaussian 
kernel density map of the occurrence locations then 
rescaled it from 1 to 20 to be derived as bias file, instead of 
using our knowledge to create artificial bias file (Fourcade 
et al. 2014). This bias file was then included into Maxent 
modeling process through setting options (Dudik et al. 
2005; Elith et al. 2010; Phillips et al. 2017). The remaining 
17 points were then compiled with the occurrence points 
from the field survey to be used as input data.  
 
Table 1. Climate and environmental variables used to build the 
models 
 
Code Name Unit 
Alt Altitude m asl 
bio_1 Annual Mean Temperature 0C×10 
bio_2 Mean Diurnal Range 0C×10 
bio_3 Isothermality
 ×100 
bio_4 Temperature Seasonality ×100 
bio_12 Annual Precipitation mm 
bio_13 Precipitation of Wettest Month mm 
bio_15 Precipitation Seasonality  mm 
bio_18 Precipitation of Warmest Quarter mm 
bio_19 Precipitation of Coldest Quarter mm 
LandCover_Java Land Cover in Java Island 2016  
broadleafjava Broadleaf forest coverage  
Evergreenjava Evergreen forest coverage  
Deciduousjava Deciduous forest coverage  
treecoverjava Tree coverage   
ndvi_all Averaged annual NDVI value  

Environmental variables data collection and Maxent 
modelling  

We selected the environmental variables in this study 
on the basis of earlier screenings of related variables 
expected to influence the existence of species (e.g., 
Prawiradilaga 2006; Syartinilia and Tsuyuki 2008; 
Fernandez and Gurrutxaga 2010; Sohl 2014; Ferrer-
Sanchez and Rodriguez-estrella 2016). Environment 
variables datasets collected to be used in this study 
amounted to 26 variables which included nineteen 
Bioclimate layers, altitude, land cover data, NDVI, and 
forest coverage data in Java Island. Bioclimate data were 
extracted from WorldClim Bioclimate datasets ver. 2.0 that 
provides 19 climatic variables that were interpolated and 
modeled from observations and averaged over the period 
1970 until 2000 at one km2 resolution 
(http://www.worldclim.org). Elevation data was also 
acquired from the WorldClim database. The Normalized 
Difference Vegetation Index (NDVI) is an index of plant 
“greenness” or photosynthetic activity from satellite 
imagery instruments (http://earthobservatory.nasa.gov) and 
also used to analyze the density of vegetation and to 
separate the healthy vegetation and unhealthy or sparse 
vegetation (Devadas 2008; Genc et al. 2008; Szilárd et al. 
2016). An average of annual NDVI data value was 
extracted from the SPOT-vegetation platform at 1 km2 
resolution (http://free.vgt.vito.be). Java Island land cover in 
2016 was obtained from http://glcf.umd.edu/data/lc/. Forest 
coverage data were acquired from http://glcf.umd.edu/ 
data/vcf/which consist of 4 types of forest coverage data, 
i.e., Evergreen forest coverage, Deciduous forest coverage, 
broadleaf forest coverage, and tree coverage data generally 
in Java. All of these layers were processed through several 
steps including resampling data, image cutting, and type 
file converting by using Qgis Software ver. 2.18.14 (QGIS 
2017). 

It has been proved that the high inter-dependency 
among the bioclimatic variables gives a raise to the issue of 
redundancy and multicollinearity (Bedia et al. 2012). Even 
though neglecting this multi-collinearity issue will not 
affect the predictive quality of the model significantly 
(Elith et al. 2011), it does, however, negatively affecting 
model interpretability, limiting any inference of the 
contribution of any correlated variables, and also 
hampering the ability of the model for extrapolation 
(Brauner and Shacham 1998; Van Gils et al. 2012, 2014). 
Consequently, we omitted the bioclimatic variables 
yielding correlation values above 0.95 (Spearman's rho 
coefficient) in the pairwise cross-correlation matrix of each 
dataset (intra-dataset correlations) (Bedia et al. 2013). 
SDM toolbox ver. 2.0 (Brown 2014) in ArcGIS ver.10.3 
was used to perform the calculation and automatically 
removed each one of the two correlated variables. Finally, 
the remaining nine bioclimatic variables along with 
altitude, NDVI, Land cover, and Forest coverage layers 
were then compiled to be used as predictor variables in this 
study (table 1). Supplementary table on land cover class 
and its code representation could be found here 
(http://glcf.umd.edu/data/lc/).  
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Maxent modelling 
Modeling exercise in this study was conducted using 

Maxent software ver. 3.4.1 (Phillips et al. 2017). Maxent 
has been proved to provide better results than other 
modeling algorithms with the basis of presence-only data 
(PO) and environmental variables (Philips and Dudik 2008; 
Summers et al. 2012). The popularization of Maxent is also 
due to its higher predictive accuracy than any other methods 
(Elith et al. 2006; Summers et al. 2012), with more than 
1000 published studies using this software since 2005 
(Merow et al. 2013; Fourcade et al. 2014). Furthermore, 
Maxent also offers a wide variety of setting options which 
will be different in each case and occasionally requires 
species-specific settings (Merow et al. 2013). Therefore, in 
this study, we tried to ensure that the setting options were 
adjusted to our specific study aims, hypothesis, and our 
intended a priori assumptions (Peterson et al. 2011; Araujo 
and Peterson 2012; Merow et al. 2013). The adjusted 
parameters were : (i) maximum iterations was set to 5,000 
for each run to allow the model to have adequate time for 
converging, (ii) Convergence threshold was set to 1×10-6, 
(iii) The model calculation was set to ten times (the 
averaged value was the one used as the result) using "cross-
validate" as the replicated run type. Using "cross-validate" 
means to split the data ten times (10% per partition) then 
train the model ten times on 90% of the data, while testing 
it each time on the 10% partition alternately. To avoid 
over-fitting and to assume that the species responds directly 
to the predictors (vs. to correlated factors), we decided to 
"smooth" the model by choosing only hinge features (Elith 
et al. 2010). Furthermore, we doubled the "regularization 
multiplier" to reduce over-fitting to a lower level 
(Radosavljevic and Anderson 2013).
 

Data analysis 
One of the main outputs of Maxent is a predictive map 

representing the distribution of potentially suitable habitat 
for the species. The degrees of predicted suitable habitat 
are linearly scaled from 0 (lowest) to 1 (highest) 
probability (Philips and Dudik 2008). Additionally, Maxent 
also calculated the variables' relative contribution to the 
model and how these variables affect the prediction. 
Alternate estimation of variable importance was also 
collected by running the jackknife test. The results of the 
jackknife test show which variable have the most useful 
information by itself and which variable appears to have 
the most information that is not present in other variables 
(Phillips et al. 2009). The predictive maps, which by 
default are in ASCII format, were further analyzed using 
QuantumGIS software ver. 2.18.14 (QGIS Development 
Team 2017). To allow us to quantify the geographical 
distribution of predicted suitable habitat, we applied binary 
calculation and categorizing the values into two categories 
(i.e., suitable and unsuitable) using the selected threshold 
rule in the setting option of Maxent. Selecting the threshold 
rule, indeed, is one of the many sources of bias that should 
be minimized by Maxent user (Phillips and Dudik 2008; 
Nenzen and Araujo 2011; Bean et al. 2012; Syfert et al. 
2013). Selecting threshold rule should incorporate 
consideration of relative importance difference between 
commission error and omission error (Phillips and Dudik 

2008; Nenzen and Araujo 2011; Bean et al. 2012; Syfert et 
al. 2013). Considering that reducing omission error is more 
important determinant than reducing commission error, 
Norris (2014) proposed “minimum training presence” or 
“fixed cumulative value 1” as the most appropriate rule. 
Liu et al. (2016) in their study also supporting those 
proposed threshold rule as appropriate for modeling a rare 
species. Therefore, we selected “minimum training 
presence” threshold rule to be used in this study. The 
predicted suitable habitat was then reclassified into three 
classes: low suitability (25 - 50% probability of 
occurrence), medium suitability, (51 - 75% probability of 
occurrence), and high suitability (>75% probability of 
occurrence), by using the "natural breaks (Jenks) 
classification method in Reclassify Analysis of ArcMap 
ver. 10.3. 
 

Maxent will calculate an Area Under the receiver 
operating characteristic (ROC) Curve (AUC) to evaluate 
the model performance. AUC value ranges between 0 
(lowest) and 1 (highest), whereby value from 0 to 0.5 
represents that the model is no better than just random 
prediction, value below 0.7 is low, value between 0.7 and 
0.9 is good, and value above 0.9 indicates high 
discrimination or indicates that the model is far better than 
random prediction (Araujo et al. 2005). Despite having 
been proved that AUC does not necessarily provide useful 
information to assess and/or to evaluate the model 
performance (Lobo et al. 2008; Bahn and McGill 2013; 
Aguirre-Gutiérrez et al. 2013), we reported it to illustrate 
that the predictions in this study perform better than any 
model with a set of random predictors. Additionally, we 
conducted True Skill Statistic (TSS) (also known as the 
Youden index) calculation as an additional measurement to 
evaluate the performance of the model by calculating the 
summary of sensitivity and specificity minus one (Youden 
1950; Allouche et al. 2006). Several studies have also 
demonstrated the use of Kappa statistic as a post-hoc 
evaluation for the Maxent model (e.g., Duan et al. 2014; 
Ali and Hossein 2016; Bagheri et al. 2017). However, 
Kappa value is highly correlated to the prevalence of the 
locality points and the size of the study area which would 
generate some bias or misunderstanding (Lobo et al. 2008; 
Fourcade et al. 2017). Moreover, due to the fact that both 
AUC and Kappa are weighting commission and omission 
errors equally (Allouche et al. 2006; Lobo et al. 2008; 
Jimenez-Valverde 2012, 2014; Fourcade et al. 2017), 
Kappa, just like AUC, is more reliable if it is applied in PA 
(Presence-Absence) model. Consequently, in case of this 
study where presence only data were used, we assume that 
the use of TSS is more suitable than the Kappa statistic.
 

RESULTS AND DISCUSSION 

Identifying important environmental variables and 
model evaluation 

We generated the predicted distribution of potentially 
suitable habitat for JHE based on observed nest locations 
compounded with sixteen climatic and environmental 
variables. According to the calculation of the relative 
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contributions of environmental variables to the Maxent 
model, there were three variables considered to have the 
most contribution to the model. These variables are 
representative of all major aspects of environmental 
variables included in the model, i.e., altitude (alt), Annual 
mean temperature (bio_1), and land cover, accounting for 
58.6%, 21.6%, and 6.4%, contribution to the final result of 
the prediction, respectively (Table 2). The cumulative 
contributions of these variables contributed in a total of 
86.6% to the model, whereas the remaining variables, each 
contributed less than 5% to the model, suggesting that the 
suitability of habitat for JHE are strongly influenced by the 
altitudinal factor, average temperature, and types of land 
cover in the area. 

Additionally, we retrieved the alternate estimation of 
variable importance through the utilization of the jackknife 
test. The results showed that for the model, the 
environmental factor with the highest gain when used in 
isolation is annual mean temperature and altitude, which 
means that these variables appear to have the most useful 
information by itself (Phillips et al. 2008). Furthermore, 
temperature seasonality (bio_4) variable seemed to have 
the most unique information that is not present in the other 
variables as, according to the test, omitting this variable 
will reduce the regularized training gain the most (Phillips 
et al. 2008).
 

A post-hoc evaluation of ecological niche modeling is 
commonly performed to assess the statistical significance 
and the predictive performance of the model, before being 
used or interpreted in any procedure (Peterson et al. 2011). 
The Area Under the receiver operating characteristic 
(ROC) Curve (AUC) value may have been highlighted; it 
can be misleading and may poorly reflect the model 
accuracy (Lobo et al. 2008; Peterson et al. 2008; Jimenez-
Valverde et al. 2013; Fourcade et al. 2014). Nevertheless, 
we retrieved the AUC value of 0.893 to indicate that the 
model built in this study performs better than any model 
with a set of random predictors, and to show the 
discrimination ability of the model (Lobo et al. 2008; 
Peterson et al. 2008; Jimenez-Valverde 2012, 2014; 
Fourcade et al. 2017). Furthermore, an additional 
evaluation of the model was conducted by calculating the 
True Skill Statistic (TSS) value. By calculating the 
summary of sensitivity and specificity minus one, we 

retrieved a TSS value of 0.87 for the model. This value, 
which is above 0.70, gives the impression that the model 
built for this study have a good degree of agreement, good 
predictive capacity, and also can be interpreted as 
preliminary evidence for the real ecological phenomenon, 
based on the environmental variables being used, rather 
than just statistical artifacts (Allouche et al. 2006; Li and 
Guo 2013).  

The relationship between the models and the dominant 
environmental variables 

In this study, we presented the response curves to 
illustrate how each of the prevailing environmental 
variables affects the model prediction. We used the 
response curve which represents model created using only 
the corresponding variable to reflect the dependence of 
predicted suitability both on the selected variable and on 
dependencies induced by the correlation between the 
selected variable and other variables (Phillips et al. 2008). 
The relationship between probability of presence and 
altitude (alt) (Figure 2.A) depicted that the probability of 
presence increased gradually along with the increase of 
altitude, reach above the 50% of probability of presence at 
t he a lt it ude o f 1 ,200 m as l and reached it s  peak 
 
 
Table 2. Percentages of variables contributing to the final model 
 
Environmental variables Contribution (%) 
Altitude 58.6 
Annual Mean Temperature 21.6 
Land Cover 6.4 
Temperature Seasonality 5 
Broadleaf forest coverage 2.8 
Ishotermality 2.3 
Mean Diurnal Range 1 
Precipitation of Coldest Quarter 0.7 
Averaged annual NDVI value 0.4 
Evergreen forest coverage 0.4 
Tree coverage 0.3 
Precipitation of Warmest Quarter 0.2 
Annual Precipitation 0.1 
Precipitation Seasonality 0.1 
Precipitation of Wettest Month 0 
Deciduous forest coverage 0 

 
 
 

  
A B C 

 
Figure 2. Response curves from Maxent for the most important variables for the species distribution model of JHE. A. Response curve 
for altitude variable in m asl (meters above sea level; B. Response curve for Annual Mean Temperature in 0C*10; C. Response curve for 
land cover variable with every category represented by numbers 
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Figure 2. Predicted distribution of potential habitat for Javan hawk-eagle in across Java Island, indonesia (Base map: Google Physical 
Maps 2014) 
 
 
 
 
 (probability of presence = >90%) at the altitude of about 
1800 m asl. Thus, it can be expected that the optimum 
altitude for JHE's habitat is at above 1,800 m asl. The 
annual mean temperature (bio_1) was another critical 
variable that affected the suitability of habitat for JHE 
(Figure 2.B). The curve shows that there was a negative 
correlation between the probability of presence and the 
average temperature, presenting that the probability of 
presence decreased with the increase of average 
temperature, wherein the lowest probability of presence 
occurred at the temperature above 240C. Regarding the 
land cover in Java Island, the response curve depict that 
forest area (no 8 in Figure 2.C) and closed shrubland (no. 6 
in Figure 2.C) as having the most probability of species 
presence, with the probability value of 0.90 and 0.87, 
respectively.  

Predicted distribution of potential suitable habitat for JHE 
Projected distribution of predicted suitable habitat for 

JHE under current climate and environmental condition is 
shown in Figure 2. Subsequent to categorizing the output 
into two categories (suitable vs unsuitable) using the 
aforementioned threshold rule (see method), the predicted 
suitable habitat were then reclassified into three classes: 
low suitability (25-50% probability of occurrence), 
medium suitability (51-75% probability of occurrence), and 
high suitability (>75% probability of occurrence) to allow 
us to compare the changes in every class of probability 
under future climate projection. According to the result, 
about 17.77% (23,209 km2) area of Java Island has been 
projected to be suitable for the JHE’s habitat. The number 
consisted of 9.31% (12,163 km2), 5.81% (7,585 km2), and 
2.65% (3,461 km2) of low, medium, and high probability 
areas, respectively (Figure 2). 

The predicted suitable habitat distributed mainly on the 
mountainous areas of Java Island. Nonetheless, the 

surrounding lowland areas also predicted to be suitable as 
JHE's habitat, despite mostly predicted to have low 
probabilities of presence. Altitudinally, the low probability 
areas were mainly distributed in lowland areas at the 
altitude of between 200 and 1100 m asl, whereas medium 
probability areas were mainly distributed at altitude of 
between 1100 and 1500 m asl. Furthermore, the models 
predicted that the high probability areas were mainly 
distributed in the highland region at the altitude of above 
1500 m asl (Figure 3). 
 

Discussion 
This study represents an attempt to model the 

distribution of potential habitat for JHE across the island 
while also trying to gather information on its preferences of 
climatic and environmental conditions. In our modeling 
exercise, altitude and annual mean temperature were 
predicted as two of the most important factors determining 
the suitability of JHE's habitat (Table 2). The model in this 
study depicts a positive correlation between the probability 
of presence and increase in altitude, wherein the high 
probability of presence (above 50%) was mainly predicted 
at the altitude of above 1200 m asl. Regarding this 
altitudinal factor, it is in accordance with Van Balen et al. 
(2001) study which found that JHE is generally 
encountered in undulating, hilly, or mountainous terrain. 
Altitudinally, JHE species will be found at the altitude of 
between sea level and about 2500 m asl. However, this 
species are more frequently encountered in secondary 
forest and evergreen forest at above 1200 m asl 
(Partasasmita et al. 2017). This elevational preference is 
similar to some of the other raptor species such as 
Eleonora's falcon (Falco eleonorae), bearded vulture 
(Gypaetus barbatus), and lesser kestrel (Falco naumanni) 
(Donazar et al. 1993; Bustamante 1997; Urios and 
Martinez-abrain 2005). 
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Table 3. Predicted habitat patches in the mountainous areas of 
Java, Indonesia 
 

Province Patch (Area) Size 
(km2)a Status 

Past 
Records 
(1980 - 
2005) 

Banten Ujung Kulon 217.41 NP  
 Mt. Aseupan 34.99 PF  
 Mt. Pulasari 9.89 PF  
 Mt. Karang 47.69 PF  
     
West-Java Mts. Gede-Pangrango 187 NP  
 Mt. Halimun-Salak 576.91 NP  
 Mt. Patuha 83.97 PF  
 Mt. Malabar 40.1 PF  
 Mts. Wayang-Windu 4.45 PF  
 Mt. Kendeng 52.1 PF/NR  
 Mt. Papandayan 61.8 PF/NR  
 Mt. Cikuray 94.7 -  
 Mt. Galunggung-Talagaboda  104 NR  
 TN. Ciremai 98.8 NP  
 Mt. Tangkuban Parahu 113 PF/NR  
 Mt. Kamojang-Guntur 104 NR  
     
Central-
Java 

Mt. Slamet 236 PF  
Mts. Dieng (Kemulan, 
Sumbing, Sundoro) 

262 PF  

 Mt. Merapi-Merbabu 119.9 PF  
 Mt. Telomoyo 61.5 -  
 Mt. Ungaran 56.9 PF  
 Mt. Muria 94.8 PF  
     
East Java Mt. Lawu 169 PF  
 Mt. Liman-Wilis 189 PF  
 Mt. Arjuna-Butak 527 PF/GFP

/NR 
 

 Mt. TN Bromo-Tengger-
Semeru 

771 PF/NP  

 Mt. Argapura 671 WR  
 Mt. Raung-Ijen 1091 PF/NR  
 Mt TN Baluran 102 NP  
 TN Meru Betiri 609 NP  
 TN Alas Purwo 370.3 NP  
Note: aSum size of medium and high probability of presence 
areas. Status: NP, National Park; GFP, Grand Forest Park, NR, 
Nature Reserve; WS, Wildlife Sanctuary; PF, Protection Forest. 
Past Record References : Sozer and Nijman 1995; Hapsoro et al. 
1998; Afianto 1999; Van Balen et al. 1999; 2001; Setiadi et al. 
2000; BridLife International 2001; Utami 2001; Suparman 2002; 
Hendarsah 2003; Yuda et al. 2003; Mikoyan 2004.)  

 
 
 
Furthermore, one of the main predictors of habitat 

suitability is energy availability, which can be crudely 
defined as mean average temperature (Lennon et al. 2000). 
It has been commonly known that altitude and temperature 
are highly correlated and it can be difficult to disentangle 
the variation of local temperature from that of altitude. The 
causal relationship between habitat suitability and 
temperature are still vague and unclear. However, we can 
identify two broad categories of how temperature affects 
the degree of habitat suitability, i.e., indirect and direct 
mechanisms. In the indirect mechanism, temperature 

affects the suitability of habitat through complex pathways 
involving its effects on resources availability, the density of 
population, competition, and other biotic interactions. 
Furthermore, the temperature may control the quantity and 
seasonal availability of prey species and, therefore, 
influence the population dynamics of JHE. On the other 
hand, a direct mechanism of how temperature may affect 
the species has been proposed by Turner et al. (1988; 
1996), wherein the temperature is affecting the species 
directly on the energy budget of its homeotherms. Areas 
which have colder temperature impose greater 
thermoregulatory loads of species and force the species to 
devote relatively more energy to regulate their body 
temperature. As a consequence, less energy is available for 
other activities, such as for growing and reproducing. 
Whereas areas which have higher temperature will affect 
the physiological traits of the bird such as affecting 
breeding time, laying eggs pattern, and hatching time 
(Blondel 1985; Perrins and McCleery 1989; Woodburn 
1997; Buse et al.1999; Parmesan and Yohe 2003; Parmesan 
2007; Visser et al. 2009; Both et al. 2014). The 
characteristic of actually suitable habitat for JHE which is 
mainly on the higher altitude, wherein tend to have a lower 
temperature than the lowland areas, is in line with the 
pattern on the response curve model that suggests the most 
optimum range of temperature for JHE's suitable habitat is 
at between 80 and 200C.  

The model exercise suggested that forest area and 
closed shrubland area as having the highest probability of 
presence accounting the probability value of 0.90 and 0.87, 
respectively. Accordingly, JHE's nests, during field 
observations, were generally encountered in mountain and 
hills areas which is still covered by the remaining natural 
forest of Java Island. Generally, natural forests in this 
island have been cleared due to various anthropogenic 
activities, and the remnants are now constrained to 
mountain areas (above 1200 m asl) with only limited areas 
of natural lowland forest (below 1200 m asl) remaining 
(Whitten et al. 1996; Prasetyo et al. 2009; Partasasmita et 
al. 2017). In the study conducted by Prawiradilaga (2006), 
it is stated that the home-range of JHE covers not only 
forest area but also production forest, cultivated area, and 
plantation areas. Nevertheless, an intensive study 
conducted by Kuswandono et al. (2003) and Nijman and 
Prawiradilaga (2003) showed that the forest areas 
(secondary and evergreen forests) are more frequently used 
by JHE as nest location than other habitat types. 
Furthermore, the model in this study also suggested that 
shrubland plays a vital role in the degree of habitat 
suitability as one of the preferred habitat types. Shrubland 
areas in Java are often found as an ecotone of between the 
forest areas and cultivated areas or plantation areas. 
Moreover, most of the prey species of JHE are small 
mammals such as squirrels (Sciuridae), small rodents 
(Muridae), tree shrews (Tupidae), and Lesser Mouse Deer 
(Tragulus javanicus) (Prawiradilaga 2006) which often 
found in shrubland areas. Accordingly, most of the JHE 
nest trees are located on the steep slope between the forest 
and shrubland areas.  
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Figure 3. Predicted altitudinal distribution of JHE’s suitable habitat across the Java Island, Indonesia 
 
 
  
 

Various attempts on habitat modeling of JHE have been 
conducted using different approaches. By using logistic and 
autologistic regression models, Syartinilia and Tsuyuki 
(2008) modeled the distribution of JHE's habitat in Mt. 
Gede-Pangrango National Park (TNGP) and its 
surrounding area. Utilizing presence nests data, pseudo-
absence data, which were generated through a random 
selection process, and several environmental variables, this 
study successfully identified the preferred habitat of JHE 
based on its environmental variables and modeling the 
habitat patches distribution surrounding the TNGP area. By 
validating the results with the historical data, this study also 
showed a significant overall accuracy of the results and the 
results also could be useful for conservation management 
activities of this species. Subsequently, Syartinillia et al. 
(2014) conducted a GIS-based habitat model of JHE by 
using an inductive approach in the entire Java Island. They 
demonstrated that by using autologistic regression, it is 
possible to extrapolate the preceding local study into the 
whole area of Java Island. Moreover, this study also 
developed an estimation of JHE population by dividing the 
area of predicted suitable habitat by assumed minimum and 
maximum home-range size. However, the predicted 
suitable area in this study was mostly distributed in the 
mountainous areas and failed to identify the suitability 
habitat of JHE in lowland areas, even though the species 
had been found in these locations. Afterward, in 2017, 
Nurfatimah et al. conducted a study to model the potential 
habitat of JHE in Central Java Province by utilizing multi-
scale approach at different image resolutions, i.e., 30 m2, 

90 m2, and 250 m2. This study demonstrated the utilization 
of logistic regression to model JHE's habitat patches in 
multi-scale images. The results of this study were able to 
highlight the feasibility of using different image resolutions 
to model the distribution of predicted habitat for JHE, 
while also provided more options for the conservationist to 
choose the most suitable image scale for managing, 
planning, and monitoring species based on the scale of 
application. 

Overlaying the World Database Protected Area of Java 
into the predicted map gives preliminary information that 
most of the predicted suitable areas fall into protected 
areas, wherein almost all of them are predicted to have 
medium to high suitability. Moreover, predictive maps also 
depict some of the predicted suitable habitats that fall 
outside the protected areas. The non-protected areas are 
mostly cultivated area and forest plantation area which are 
mainly owned and operated by the state-owned company. 
The predictive map also has shown a good match with 
historical records of JHE, with only three locations which 
were predicted to be suitable but neither historical nor 
current records can confirm it. Despite various 
measurements have been taken to minimize errors in the 
model caused by bias on the sampling data (see method), it 
is inevitable that such omission and commission errors may 
still present in the result of the model due to several 
reasons, i.e., (i) neither the dispersal rate nor the 
demography of meta-population of species was included in 
the model, since these variables are currently unavailable. 
A raptor species, such as N. bartelsi, has a wide dispersal 
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range, and for this reason, modeling the niche for this type 
of species is considerably better if absence data were 
included because it is known that the ENM/SDM model 
utilizes the actual absence data, rather than pseudo-
absences data. This is intended to produce a lower level of 
overprediction (Vaclavik and Meentemeyer 2009). (ii) The 
predictors used in this study have not yet comprehensively 
represented all of the environmental factors affecting the 
existence of the species, e.g., biotic interaction factor). iii) 
micro-climate variations affect the existence of species in 
the predicted areas but were not included in the model due 
to limited availability of data. Therefore, it is important to 
note that, like most of the ENM (SDM), the "predicted" 
distribution of suitable habitat does not represent the "true" 
prediction of the distribution of species, but rather the 
prediction of the distribution of "suitable" habitat based 
only on the predictors used in this study. Nonetheless, we 
may treat the results of this model as an appropriate 
representation of how the current climate condition and 
other variables shape the distribution of suitable habitat for 
JHE. Moreover, such modeling exercise provides critical 
information that can be utilized for research, planning, and 
management needs at landscape scales.  

Building more ideal model requires the availability of 
multiple compounding factors which are expected to have 
either direct or indirect effect on the target species and its 
associated biota. Currently, however, such ideal packages 
of data are limited. This limitation, in the availability of 
more detailed ecological and physiological data, prevents 
the construction of more ideal models (Morin and Thriller 
2009; Sinclair et al. 2010; Ellis 2011). Nonetheless, the 
recent development of new climate models and the refining 
of current climate models provide the opportunity to build 
more precise and ideal model. Further modeling attempt 
should also incorporate potential human-induced land 
use/land cover changes, biotic interactions between species 
in the regional ecosystems, more detailed ecological data, 
dispersal rates of species, meta-population demography, 
and better presence data which accurately represent the 
variability of ecological niche of species. In spite of all of 
the aforementioned limitations, this study provides the 
baseline of understanding the influence of macroclimate on 
shaping the distribution of potentially suitable habitat for 
JHE while finding out other possible areas which are 
currently unoccupied but likely can be occupied in the 
future. By using a different technique of species 
distribution modeling, such as profile technique (e.g., 
DOMAIN, ENFA) and Regression-based technique (e.g., 
GLM, GAM, and MARS), they may presents slightly 
different quantitative results and discrepancies in the 
potential distribution habitat may occur. Nonetheless, we 
believe that by using currently available resources of data, 
the overall trend and projection results would be similar.  

ACKNOWLEDGEMENTS 

We thank the DIKTI for partially funding this research. 
We also thank all parties who provided some nest site of 
Javan hawk-eagle coordinates data used by us. This 

research is part of our big research project to modeling the 
predicted suitable habitat for Javan hawk-eagle across the 
Java Island which later funded by Muhammad bin Zayed 
Conservation Fund. This paper publication is supported by 
ALG (Academic Leadership Grant) of Prof. Johan 
Iskandar. Therefore, authors would like to thank Rector of 
Padjadjaran University, Prof. Tri Hanggono has supported 
the publication. 

REFERENCES 

Afianto MY. 1999. Some ecological aspects of the Javan hawk-eagle 
Spizaetus bartelsi at G. Salak. Honors thesis, Bogor Agriculture 
University, Bogor [Indonesia]. 

Aguirre-Gutiérrez J, Carvalheiro LG, Polce C, van-Loon EE, Raes N, 
Reemer M, Biesmeijer JC. 2013. Fit-for-purpose: species distribution 
model performance depends on evaluation criteria - Dutch Hoverflies 
as a case study. PLoS One 8 (5): DOI: 10.1371/journal.pone.0063708. 

Ali MZC, Hossein PS. 2016. Evaluation of Maxent method for habitat 
distribution modeling of three plant species in Garizat rangelands of 
Yazd province, Iran. Range Manag Agrof 37 (2): 142-147.  

Allouche O, Tsoa A, Kadmon R. 2006. Assessing the accuracy of species 
distribution models: prevalence, kappa and the true skill statistic 
(TSS). J App Ecol 43 (1): 1223-1232. 

Araujo M, Peterson AT. 2012. Uses and misuses of bioclimatic envelope 
modeling. Ecol 93 (7): 1527-1539. 

Araujo MB, Pearson RG, Thuiller W. 2005. Validation of species-climate 
impact models under climate change. Glob Change Biol 11: 1504-
1513. 

Bagheri H, Ghorbani A, Zare Chahouki MA, Jafari AA, Sefidi K. 2017. 
Halophyte species distribution modeling with Maxent model in the 
surrounding rangelands of Meighan Playa, Iran. Appl Ecol Envi Res 
15 (3): 1473-1484. 

Bahn V, McGill BJ. 2013. Testing the predictive performance of 
distribution models. Oikos 122 (3): 321-331. 

Baldwin, Roger A. 2009. Use of maximum entropy modeling in wildlife 
research. Entropy 11 (4): 854-866. 

Bean WT, Stafford R, Brashares JS. 2012. The effects of small sample 
size and sample bias on threshold selection and accuracy assessment 
of species distribution models. Ecography 35: 250-258. 

Beaumont LJ, Hughes L. 2002. Potential changes in the distributions of 
latitudinally restricted Australian butterfly species in response to 
climate change. Glob Change Biol 8: 954-971. 

Bedia J, Herrera S, Guti´errez, JM. 2013. Dangers of using global 
bioclimatic datasets for ecological niche modeling. Limitations for 
future climate projections. Glob Planetary Change1-46. DOI: 
10.1016/j.gloplacha.2013.04.005  

Belgacem AO, Louhaichi M. 2013. The vulnerability of native rangeland 
plant species to global climate change in the West Asia and North 
African regions. Clim Ch 119: 451-463. 

Berry PM, TP Dawson, PA Harrison, RG Pearson. 2002. Modeling 
potential impacts of climate change on the bioclimatic envelope of 
species in Britain and Ireland. Glob Ecol Biogeo 11:453-462. 

BirdLife International. 2001. Threatened birds of Asia: the BirdLife 
International red data book. Cambridge. 

Blondel J. 1985. Breeding strategies of the blue tit and coal tit (Parus) in 
mainland and island Mediterranean habitat: a comparison. J of Animal 
Ecol 54 (1): 531-556. 

Booth TH, Nix HA, Busby JR, Hutchinson MF. 2014. BIOCLIM: the first 
species distribution modeling package, its early applications, and 
relevance to most current MAXENT studies. Divers and Distrib 20: 1-
9.  

Boria RA, Olson LE, Goodman SM, Anderson RP. 2014. Spatial filtering 
to reduce sampling bias can improve the performance of ecological 
niche models. Ecol Modell 275: 73-77. 

Both C, Aleksandr V, Enemar A, Blaauw B, Cowie RJ, Dekhuijzen AJ, 
Eeva T, Enemar A, Gustafsson L, Ivankina EV, Ja¨rvinen A, Metcalfe 
NB, Nyholm NEI, Potti J, Ravussin PA, Sanz JJ, Silverin B, Slater 
FM, Sokolov LV, Torok J, Winkel W, Wright J, Zang H, Visser ME. 
2004. Large-scale geographical variation confirms that climate change 
causes birds to lay earlier. Proc R Soc Lond B 271 (2): 1657-1662. 



NURSAMSI et al. – Predicted suitable habitat distribution of Nisaetus bartelsi 

 

1549 

Brauner N, Shacham M. 1998. Role of range and precision of the 
independent variable in regression of data. Aiche J 44: 603-611. 

Brown JL. 2014, SDMtoolbox: a Python-based GIS toolkit for landscape 
genetic, biogeographic, and species distribution model analyses. 
Methods Ecol Evol 5 (7): 1-7. 

Buse A, Dury SJ, Woodburn RJW, Perrins CM, Good JEG. 1999. Effects 
of elevated temperature on multi-species interactions: the case of 
pedunculate oak, Winter Moth and Tits. Func Ecol 13 (1): 74-82.  

Bustamante J. 1997. Predictive models for lesser kestrel Falco 
distribution, abundance, and extinction in southern Spain. Biol 
Conserv 80 (1): 153-160. 

Charmantier A, McCleery RH, Cole LR, Perrins C, Kruuk LEB, Sheldon 
BC. 2008. Adaptive phenotypic plasticity in response to climate 
change in a wild bird population. Science 320 (2): 800-803.  

Devadas R, Lamb DW, Simpfendorfer S, Backhouse D. 2008. Evaluating 
ten spectral vegetation indices for identifying rust infection in 
individual wheat leaves. Precis Agric 10: 459-470. 

Dona´zar JA, Hiraldo F, Bustamante J. 1993. Factors influencing nest site 
selection, breeding density and breeding success in the bearded 
vulture (Gypaetus barbatus). J Appl Ecol 30 (1): 504-514. 

Donald PF, Gedeon K, Collar NJ, Spottiswoode CN, Wondafrash M, 
Buchanan GM. 2012. The restricted range of the Ethiopian Bush-crow 
Zavattariornis stresemanni is a consequence of high reliance on 
modified habitats within narrow climatic limits. J Ornithol, DOI 
10.1007/s10336-012-0832-4. 

Duan RY, Xiao-Quan K, Min-Yi H, Sara V, Xiang J. 2016. The potential 
effects of climate change on amphibian distribution, range 
fragmentation and turnover in China. Peer J 4: 165-174. 

Dudik M, Schapire RE, Phillips SJ. 2005. Correcting sample selection 
bias in maximum entropy density estimation. App Advan Neural 
Inform Process Sys 18: 181-197. 

Elith J, Franklin J. 2013. Species distribution modeling. In: Levin SA (ed). 
Encyclopedia of Biodiversity Second Edition ed. Oxford: Academic 
Press, Oxford. 

Elith J, Kearney M, Phillips S. 2010. The art of modeling range-shifting 
species. Methods Ecology Evol 1: 330-342. 

Elith J, Leathwick JR. 2009. Species distribution models: ecological 
explanation and prediction across space and time. Annu Rev Ecol 
Evol Syst 40: 677-97. 

Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ. 2011. A 
statistical explanation of Maxent for ecologists. Divers Distrib 17: 43-
57. 

Ellis CJ. 2011. Predicting the biodiversity response to climate change: 
challenges and advances. Syst Biodivers 9: 307-317.  

Fernandez JM, Gurrutxaga M. 2010. Habitat suitability models for 
assessing bird conservation goals in ‘special protection areas’. 
Ardeola 57 (Especial): 79-91. 

Ferrer-Sánchez Y, Rodríguez-Estrella R. 2016. How rare species 
conservation management can be strengthened with the use of 
ecological niche modeling: The case for endangered endemic 
Gundlach's Hawk and Cuban Black-Hawk, Glob Ecol Conserv 5 (1): 
88-99. 

Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR. 2007. The 
biogeography of prediction error: why does the introduced range of 
the fire ant over-predict its native range. Glob Ecol Biogeo 16 (1): 
24-33. 

Fourcade Y, Besnard AG, Secondi J. 2017. Paintings predict the 
distribution of species or the challenge of selecting environmental 
predictors and evaluation statistics. Global Ecol Biogeogr 12 (1): 1-
12. 

Fourcade Y, Engler JO, Besnard AG, Rödder D, Secondi J. 2013. 
Confronting expert-based and modeled distributions for species with 
uncertain conservation status: a case study from the Corncrake (Crex 
crex). Biol Conserv 167: 161 - 171. 

Fourcade Y, Engler JO, Rodder D, Secondi J. 2014. Mapping species 
distributions with MAXENT using a geographically biased sample of 
presence data: A performance assessment of methods for correcting 
sampling bias. PLoS ONE 9 (5): e97122. DOI: 
10.1371/journal.pone.0097122 

Franklin J, Miller JA. 2009. Mapping species distributions: spatial 
inference and prediction. Cambridge University Press. New York. 

GBIF.org (29th February 2016) GBIF Occurrence Download 
https://doi.org/10.15468/dl.ywhpmz 

Genc H, Genc L, Turhan H, Smith SE, Nation JL. 2008. Vegetation 
indices as indicators of damage by the sunn pest (Hemiptera: 
Scutellaridae) to field-grown wheat. Afr J Biotech 7: 357-371.
 

Google Earth Pro. 2017. Download Google Earth Pro for PC, Mac, or 
Linux. https://www.google.com/earth/download/gep/agree.html. 

Guillera-Arroita G, Jose J, Lahoz-Monfort, Elith. 2014. Maxent is not a 
presence-absence method: a comment on Thibaud et al. Meth Ecol 
Evol 5 (1): 1192-1197. 

Guisan A, Thuiller W. 2005. Predicting species distribution: offering more 
than simple habitat models. Ecol Lett 8: 993-1009.  

Hapsoro, Lesmana D, Kartiwa H, Mulyadi, Valentinus A, Purba C. 1998. 
Future from the high frontier: final report of Javan hawk-eagle 
surveys in West Java. Telapak Indonesia Foundation, Bogor. 

Hariyati JH, Arisoesilaningsih E, Hakim L. 2013. Seedling growth of 
some native trees in Ranu Pani- Ranu Regulo restoration area, Bromo 
Tengger Semeru National Park. J Biodiv Environ Sci 3 (6): 47-55. 

Harrison PA, PM Berry, N Butt, M New. 2006. Modeling climate change 
impacts on species' distributions at the European scale: implications 
for conservation policy. Env Sci Policy 9:116-128. 

Hastie T, Fithian W. 2013. Inference from presence-only data; the 
ongoing controversy. Ecography 36 (1): 864-867. 

Hendarsah G. 2003. Flight skill development, home range and movements 
of Javan hawk-eagle (Spizaetus bartelsi) during a post-fledging period 
(at 56-243 days) in Ciasem, Gunung Tangkuban Perahu Nature 
Reserve. In: Prawiradilaga DM (ed) Proceedings of the Second 
Symposium on Raptor of Asia. The Indonesian Committee for the 
Second Symposium of Asian Raptor Research & Conservation 
Network Bogor. 

Jaynes ET. 1957. Information theory and statistical mechanics. Physical 
Review 106 (1): 620-630. 

Jensen RA, J Madsen, M O’Connell, MS Wisz, H Toemmervik, F 
Mehlum. 2008. Prediction of the distribution of arctic-nesting pink 
footed geese under a warmer climate scenario. Glob Change Biol 
14:1-10. 

Jimenez-Valverde A, Acevedo P, Barbosa AM, Lobo JM, Real R. 2013 
Discrimination capacity in species distribution models depends on the 
representativeness of the environmental domain. Glob Ecol Biogeo 
22: 508-516. 

Jimenez-Valverde A. 2012. Insights into the area under the receiver 
operating characteristic curve (AUC) as a discrimination measure in 
species distribution modeling. Glob Ecol Biogeo 21: 498-507.
 

Jimenez-Valverde A. 2014. Threshold-dependence as a desirable attribute 
for discrimination assessment: implications for the evaluation of 
species distribution models. Biodiversity and Conservation 23: 369-
385. 

Kramer-Schadt S, Niedballa J, Pilgrim JD, Schro¨der B, Lindenborn J, et 
al. 2013. The importance of correcting for sampling bias in Maxent 
species distribution models. Divers Distrib 19: 1366-1379. 

Kuswandono D, Ekawati S, Mulyati, Murate T, Inoue T, Sakaguchi N. 
2003. Javan hawk-eagle Spizaetus bartelsi conservation in Gunung 
Halimun National Park. Research on endangered species in GHNP. 
Research and Conservation of Biodiversity in Indonesia. 9: 62-70. 

Lennon JJ, Greenwood JJD, Turner JRG. 2000. Bird diversity and 
environmental gradients in Britain: a test of the species-energy 
hypothesis. J Animal Ecol 69 (1): 581-598. 

Li W, Guo Q. 2013. How to assess the prediction accuracy of species 
presence-absence models without absence data?. Ecograph 36 (7): 
788-799. 

Liu C, Newell G, White M. 2016. On the selection of thresholds for 
predicting species occurrence with presence-only data. Ecol Evol 6 
(1): 337-348. 

Lobo JM, Jiménez-Valverde A, Real R. 2008. AUC: a misleading measure 
of the performance of predictive distribution models. Glob Ecol 
Biogeogr 17 (2): 145-151. 

Merow C, Matthew J, Smith, John A, Silander Jr. 2013. A practical guide 
to Maxent for modeling species’ distributions: what it does, and why 
inputs and settings matter. Ecography 36: 1058-1069. 

Mikoyan L. 2004. Vegetation study in the home range of Javan hawk-
eagle at Telaga Warna Nature Reserve, Tugu Village, Bogor, West 
Java. Honors thesis, Faculty of Biology, National University, Jakarta. 
[Indonesia] 

Morin X, Thuiller W. 2009. Comparing niche- and process-based models 
to reduce prediction uncertainty in species range shifts under climate 
change. Ecol Lett 90: 1301-1313. 

Myers, Norman, Russell MA, Cristina GM, et al. 2000. Biodiversity 
hotspots for conservation priorities. Nat 403 (6772): 853-858. 

Nenzén HK, Araújo M. 2011. Choice of threshold alters projections of 
species range shifts under climate change. Ecological Modelling 222: 
3346-3354. 



 BIODIVERSITAS 19 (4): 1539-1551, July 2018 

 

1550 

Nijman V, Prawiradilaga DM. 2003. Tropical forest raptors as Indicators 
in biodiversity monitoring programs and conservation area selection: 
minimal area requirements for the raptor community of the Sundaic 
region. In: Nijman V, Prawiradilaga DM (eds) Quarterly report 
prepared for the Indonesian Institute of Sciences (LIPI). Univ 
Amsterdam & Puslitbang Biologi-LIPI, Bogor. 

Nurfatimah C, Syartinilia, Mulyani YA. 2017. The potential habitat of 
Javan hawk-eagle based on multi-scale approach and its implication 
for conservation. IOP Conf. Series: Earth and Environmental Science 
54 (1): 1-12.  

Nussey DH, Postma E, Gienapp P, Visser ME. 2005. Selection on 
heritable phenotypic plasticity in a wild bird population. Science 310 
(1): 304-306.  

Ostendorf B, DW Hilbert, MS Hopkins. 2001. The effect of climate 
change on tropical rainforest vegetation pattern. Ecol Modell 145: 
211-224. 

Parmesan C, Yohe G. 2003. A globally coherent fingerprint of climate 
change impacts across natural systems. Nature 421: 37-42. 

Parmesan C. 2007 Influences of species, latitudes and methodologies on 
estimates of phenological response to global warming. Glob. Change 
Biol. 13 (1): 1860-1872.  

Partasasmita R, Atsuary ZIA, Husodo T. 2017. The use of forest canopy 
by various bird species in tropical forest montana zone, the Nature 
Reserve of Mount Tilu, West Java, Indonesia. Biodiversitas 18 (2): 
453-457 

Partasasmita R, Mardiastuti A, Solihin DD, Widjajakusuma R, Prijono 
SN. 2009. Community fruit eater bird habitat succession. Biosfera 26 
(2): 90-99. [Indonesia] 

Partasasmita R. 2009. Community Ecology of Frugivorous Bird: Eating 
Ecology and Shrub Succession in Panaruban, Subang [Dissertation]. 
Bogor Agricultural University, Bogor. [Indonesian] 

Perrins CM, McCleer RH. 1989. Laying dates and clutch size in the great 
tit. Wilson Bulletin 101 (1): 236-252. 

Perrins CM. 1991. Tits and their caterpillar food supply. Ibis 133 (1): 49-
54. 

Peterson AT, Papes M, Soberon J. 2008. Rethinking receiver operating 
characteristic analysis applications in ecological niche modeling. Ecol 
Modell 213: 63-72. 

Peterson AT, SoberoÂn J, Pearson RG, Anderson RP, MartõÂnez-Meyer 
E, Nakamura M, et al. 2011. Ecological niches and geographic 
distributions (MPB-49). Princeton University Press. Princeton. 

Peterson AT, Soberon J, Pearson RG, Martínez-Meyer E, Nakamura M, 
Araújo MB. 2011. Evaluating model performance and significance. 
In: A. Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-
Meyer E, Nakamura M, Araújo MB. (eds). Ecological Niches and 
Geographic Distributions. Princeton University Press. New Jersey. 

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. 
Opening the black box: an open-source release of Maxent. Ecography 
40 (7): 887-893. 

Phillips SJ, Anderson RP, Schapire RE. (2006) Maximum entropy 
modeling of species geographic distributions. Ecological Modelling 
190 (1): 231-259. 

Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy 
modeling of species geographic distributions. Ecol model 190: 231-
259.  

Phillips SJ, Dudık M, Elith J, Graham CH, Lehmann A, et al. 2009. 
Sample selection bias and presence-only distribution models: 
implications for background and pseudo-absence data. Ecol Appl 19: 
181-197. 

Phillips SJ, Dudik M. 2008. Modeling of species distributions with 
Maxent: new extensions and a comprehensive evaluation. Ecography 
31: 161-175. 

Phillips SJ, Elith J. 2013. On estimating probability of presence from use-
availability or presence-background data. Ecology 94 (1): 1409-1419. 

Prasetyo LB, Kartodihardjo H, Adiwibowo S, Okarda B, Setiawan Y. 
2009. Spatial Model Approach on Deforestation of Java Island, 
Indonesia. JIFS 6 (1): 37-44. 

Prawiradilaga DM. 2006. Ecology and conservation of endangered Javan 
hawk-eagle Spizaetus bartelsi. Ornithol Sci 5 (1): 177-186. 

QGIS Development Team, 2017. QGIS Geographic Information System. 
Open Source Geospatial Foundation. http://qgis.osgeo.org. 

Qian JH, Robertson JW, Moron V. 2010. Interactions among ENSO, the 
Monsoon, and Diurnal Cycle in Rainfall Variability over Java, 
Indonesia. J Atm Sci 67: 3509-3524.  

Radosavljevic A, Robert P. Anderson. 2013. Making better MAXENT 
models of species distributions: complexity, overfitting and 
evaluation. J. Biogeogr 41: 629-643. 

Remya K, Ramachandran A, Jayakumar S. 2015. Predicting the current 
and future suitable habitat distribution of Myristica dactyloides 
Gaertn. using Maxent model in the Eastern Ghats, India. Ecol 
Engineer 82: 184-188.  

Safana NG, Partasasmita R, Rakhman Z. 2018. Daily acticity of 
changeable hawk-eagle (Nisaetus cirrhatus) in Kamojang Eagle 
Conservation Center. J Biol Sci 5 (1): 57-63 

Setiadi AP, Rakhman Z, Nurwatha PF, Muchtar M, Raharjaningtrah W. 
2000. Status, distribution, population, ecology and conservation Javan 
hawk-eagle Spizaetus bartelsi Stresemann, 1924 on the southern part 
of West Java. Final Report BP/FFI/BirdLife International/YPAL-
HIMBIO UNPAD, Bandung. 

Sinclair SJ, White MD, Newell GR. 2010. How useful are species 
distribution models for managing biodiversity under future climates?. 
Ecol Soc 15: 8-16. 

Sohl TL. 2014. The Relative impacts of climate and land-use change on 
conterminous United States bird species from 2001 to 2075. PLoS 
ONE 9 (11): e112251. DOI: 10.1371/journal.pone.0112251. 

Sözer R, Nijman V. 1995. Behavioural ecology, distribution and 
conservation of the Javan hawk-eagle Spizaetus bartelsi Stresemann, 
1924. Verslagen en Technische Gegevens 62: 1-122. 

Stolar J, Nielsen SE. 2015. Accounting for spatially biased sampling effort 
in presence-only species distribution modeling. Divers Distrib 21 (5): 
595-608. 

Summers DM, Bryan BA, Crossman ND, Meyer WS. 2012. Species 
vulnerability to climate change: impacts on spatial conservation 
priorities and species representation. Glob Change Biol 18: 2335-
2348. 

Suparman U. 2002. Surveys on protected birds: Javan hawk-eagle and 
other raptors in southern Cianjur District. Final report for FFI-
Indonesia. KPB CIBA, Cianjur (Indonesian). 

Syartinilia, Tsuyuki S, Lee JS. Gis-based habitat model of Javan hawk-
eagle (Spizaetus bartelsi) using an inductive approach in Java Island, 
Indonesia. In: Harris JD, Brown PL (eds). Wildlife: Destruction, 
Conservation, and Biodiversity. Nova Science Publishers. New York. 

Syartinilia, Tsuyuki S. 2008. GIS-based modeling of Javan hawk-eagle 
distribution using logistic and autologistic regression models. Ornithol 
Sci 5 (1): 756-769. 

Syfert MM, Smith MJ, Coomes DA. 2013. The effects of sampling bias 
and model complexity on the predictive performance of Maxent 
species distribution models. Plos One 8: 551-558.  

Szilárd S, Zoltán G, Boglárka B. 2016. Specific features of NDVI, NDWI 
and MNDWI as reflected in land cover categories. Landsc Environ 
10: 194-202. 

Urios G, Martınez-Abraın A. 2005. The study of nest-site preferences in 
Eleonora’s falcon Falco eleonorae through digital terrain models on a 
western Mediterranean island. J Ornith 147 (1): 13-23. 

Vaclavik T, Meentemeyer RK. 2009. Invasive species distribution 
modeling (iSDM): Are absence data and dispersal constraints needed 
to predict actual distributions?. Ecol Model 220 (1): 3248-3258. 

van Balen S, Sozer R, Nijman V. 1999. Distribution and conservation of 
the endemic Javan hawk-eagle Spizaetus bartelsi. Bird Conserv Int 9 
(1): 333-349. 

van Balen S. 1991. The Java Hawk Eagle Spizaetus bartelsi. WWGBP 
project report No. 1, March 1990. Ecology and conservation of 
endangered Javan hawk-eagle In: Chancellor R & Meyburg B-U (eds) 
Birds of Prey Bulletin No. 4. pp 33-39. World Working Group on 
Birds of Prey and Owls, Berlin, London & Paris. 

van Balen, S, Nijman V, Sozer R. 2001. Conservation of the endemic 
Javan hawk-eagle Spizaetus bartelsi Stresemann, 1924 (Aves: 
Falconiformes): density, age-structure and population numbers. 
Zoology 70 (1): 161-173. 

Van Gils H, Conti F, Ciaschetti G, Westinga E. 2012. Fine resolution 
distribution modeling of endemics in Majella National Park, Central 
Italy. Plant Biosys 146 (1): 276-287. 
 

Van Gils H, Westinga E, Carafa M, Antonucci A, Ciaschetti G. 2014. 
Where the bears roam in Majella National Park, Italy. J Nat Conserv 
22 (1): 23-34. 

van Noordwijk AJ, McCleery RH, Perrins CM. 1995. Selection for the 
timing of great tit breeding in relation to caterpillar growth and 
temperature. J Animal Ecol 64 (1): 451-458. 



NURSAMSI et al. – Predicted suitable habitat distribution of Nisaetus bartelsi 

 

1551 

Visser ME, Holleman LJM, Caro SP. 2009. Temperature has a causal 
effect on the avian timing of reproduction. Proc. R. Soc. B 276 (1): 
2323-2331. 

Whitten T, Soeriaatmadja R, Afiff SA. 1996. The ecology of Java and 
Bali: the ecology of Indonesia series, vol. 2. Periplus Editions, 
Singapore. 

Woodburn RJW. 1997. The breeding ecology of the blue tit and great tit 
and the possible effect of climate change. [Thesis], University of 
Oxford, UK. 

Youden WJ. 1950. Index for rating diagnostic tests. Cancer 3 (1): 32-35. 
Yuda IP, Nurcahyo A, Atmojo H. 2003. Javan hawk-eagle at Mount 

Merapi, Yogyakarta, Indonesia. In: Prawiradilaga DM (ed) 
Proceedings of the Second Symposium on Raptor of Asia. The 
Indonesian Committee for the Second Symposium of Asian Raptor 
Research & Conservation Network, Bogor. 

 


