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Abstract. Kaky E. 2020. Potential habitat suitability of Iraqi amphibians under climate change. Biodiversitas 21: 731-742. Biodiversity 
management and conservation planning are two techniques for reducing the rate of biodiversity loss, especially under the effect of 
climate change. Here 289 records of five species of amphibians from Iraq and seven environmental variables were used with MaxEnt to 
predict potential habitat suitability for each species under current and future conditions, using the 5th IPCC assessment  (RCP 2.6 and 

RCP 8.5 for the year 2050). The models suggest that annual precipitation and the mean temperature of the wettest quarter are the main 
factors that shape the distributions of these species. The estimated current habitat suitability was closely similar to that for 2050 under 
both scenarios, with a high niche overlap between them for all species. Among species, there were low niche overlaps between the frogs 
Bufo viridis, Hyla savignyi and Rana ridibunda, and also between the salamanders Neurergus crocatus and Neurergus microspilotus. 
Future sampling should focus on areas not currently covered by records to reduce bias. The results are a vital first step in long-term 
conservation planning for these species. Via sharing these results with decision-makers and stakeholders a crucial conservation actions 
need to increase Iraqi Protected Areas to avoid losing biodiversity in Iraq especially the unique populations and threaten species. 

Keywords: Conservation, Iraq, global warming, MaxEnt, Species Distribution Modelling  

INTRODUCTION 

In the last few decades, it has become obvious to both 

scientists and the public that we are living in a period of 

extraordinary biodiversity crises. Thousands or perhaps 

tens of thousands of taxa and millions of unique 

populations are expected to become extinct in the wild 

under the effects of rapid climate changes  (MEA 2005). 

This is the first time in the history of life that so many 

species have been threatened over such a short time. If the 

losses continue, a massive extinction will result in which 

the planet loses about 75% of species over the next few 
centuries  (Monastersky 2014). 

Climate change is estimated to become a more 

important factor in biodiversity loss over time  

(Monastersky 2014). The Intergovernmental Panel on 

Climate Change  (IPCC) predicts that global temperatures 

will increase by about 0.2 °C for each decade in the future, 

depending on CO2 emission levels  (IPCC 2014). Many 

studies report that climate change has the potential to shift 

global species distributions  (Alkemade et al. 2010; 

Thuiller et al. 2005; Araújo et al. 2006), especially towards 

more northern parts of the globe  (Parmesan and Yohe 
2003; Root et al. 2003). Prevention of these extinctions is 

vital to protect our planet and ecosystems. The protection 

of biological diversity at all levels  (species, genetics, and 

ecosystems) is fundamental to ecosystem and conservation 

planning, with all three levels essential for wildlife and 

human survival  (MEA 2005) 

Species distribution modeling is a common and 

effective way of assembling and presenting the spatial 

distributions of different taxa, including amphibians  (e.g. 

Gasc et al. 1997). Many different methods, tools, and 

protocols have been developed recently to study 

distributions and the impact of climate change. Species 

distribution models  (SDMs) provide useful information in 

terms of habitat suitability, and help to find the climate 

conditions for future adaptation in terms of conservation  

(Franklin 2009). SDMs estimate the relationships between 

environmental predictors and species presence or 

abundance  (Elith and Leathwick 2009; Warren and Seifert 

2011), providing new tools to explore and gain insights into 

different questions in conservation, evolution, and ecology  
(Elith et al. 2006). They are widely used to study the 

effects of climate change on conservation planning  

(Araujo et al. 2011; Dobrovolski et al. 2014; Kaky and 

Gilbert 2017, 2019a; de Luis et al. 2019). Their validity 

and power have been criticized in the literature because 

they lack mechanisms  (Hampe 2004; Ibáñez et al. 2006), 

but they have proved their accuracy in many studies in 

predicting habitat suitability, and whether ranges will 

decrease or increase under climate change  (Araújo and 

Rahbek 2006; Fois et al. 2016). SDMs are particularly 

good for evaluating the niches of poorly known species  
(Fois et al. 2018) and in developing countries with sparse 

data  (Kaky and Gilbert 2016, 2019b). They can be used to 

guide sampling to find new previously unknown 

populations  (Fois et al. 2015). 

Iraq is an example of a country that does not have up-

to-date information on its biodiversity because of the 

conflicts since 1980, hampering conservation planning. 

Iraqi amphibians represent one taxon about which not 

enough is known, even globally  (IUCN 2019). 

Amphibians face a higher extinction rate compared with 
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other taxa, with 41% of them threatened  (Monastersky 

2014). According to the United Nations Environmental 

Programme  (UNEP 2019) biodiversity in Iraq has four 

main threats: lack of an organization or legal system for 

conservation; lack of a proper Protected Areas network; no 

action plan, techniques or strategies for biodiversity 

conservation on a national scale; and numerous threatened 

species because of ecosystem degradation, especially the 

loss of the Mesopotamian marshlands and from oil spills  

(NRBI 2010). The ratio of land that is nominally protected 
as reserves in Iraq is about 1.5%  (UNEP-WCMC 2019), 

and a great deal more effort is required to achieve the Aichi 

Target 11 of 17% by 2020  (CBD 2010). Iraq needs more 

plans and strategies to develop its capabilities in 

biodiversity management and conservation, to counter the 

various effects of habitat destruction, land-use degradation, 

fragmentation, increasing population density, climate 

change and so on. 

This study aims to find suitable habitat conditions for 

Iraqi amphibians under climate change using SDMs. These 

conditions are of course determined by both biotic and 
abiotic factors  (Wiens 2011; Wisz et al. 2013), but abiotic 

conditions are known to be important  (Abdelaala et 

al. 2019). A set of abiotic environmental variables are used 

to predict habitat suitability, both currently and in the 

future under climate change using two emission-scenario 

pathways of the 5th IPCC assessment. The potential habitat 

suitability maps can then be used as initial priority 

locations for conservation planning in the near future. 

MATERIALS AND METHODS 

Study species 

Iraq  (Figure 1) has ten species of amphibian, in this 
study five of them have been used, consisting of three 

species of frog  (Bufo viridis, Hyla savignyi and Rana 

ridibunda), and two of salamander  (Neurergus crocatus 

and Neurergus microspilotus) with 289 occurrence records  

(see Table 1, Figure 2.A). The occurrence points are 

presence-only records collected from different sources for 

example online resources like VertNet  (http: 

//portal.vertnet.org/), literature, and filed work. To avoid 

overfitting or imprecise predictions the species with less 

than ten records deleted  (Baldwin 2009). Based on the 

IUCN Red List version 2019-2 two of the frogs  (Hyla and 

Rana) are categorized as Least Concern with stable 
populations, but Bufo viridis is Data Deficient  (Avci et al. 

2015). The two salamanders are endemic to the region of 

Iraq, Iran, and Turkey  (Sayım et al. 2009; Najafi-Majd and 

Kaya 013). According to the IUCN Red List, both 

salamanders are under threat of extinction. Neurergus 

microspilotus is Critically Endangered  (Sharifi et al. 

2009), and Neurergus crocatus is Vulnerable  (Papenfuss et 

al. 2016). 

Current and future climate data 

Interpolated from climate data from the period 1950-

2000, 19 environmental factors  (Table 2) obtained from 
the WorldClim dataset  (Hijmans et al. 2005; http: 

//www.WorldClim.org) were used as predictors that might 

impact the distribution of Iraqi amphibians. These data 

were considered to indicate current climatic conditions. A 

resolution of 30 arc-seconds  (~1 km) has been choosing to 

run the model. The Variance Inflation Factor  (VIF) was 

used to reduce collinearity among the environmental 

variables, excluding those with VIFs greater than 10  (using 

the ‘sdm’ package of R: Naimi and Araújo 2016). After 

evaluation, seven environmental variables were retained to 

run the model  (see Table 2). 
 

 

 

 
 

Figure 1. Political map of Iraq showing international borders, the 
national capital Baghdad, governorate capitals, major cities, main 
roads, railroads, and major airports.  (https: 
//www.nationsonline.org/oneworld/map/iraq_map.htm) 
 
 

 
Table 1. checklist of Iraqi amphibian and occurrence number. 
 

Family Species  
Occurrence 

no. 

Bufonidae Bufotes surdus  (Bufo viridis) 2 
Bufotes variabilis 99 

Hylidae Hyla savignyi 59 
Pelobatidae Pelobates syriacus 0 
Ranidae Pelophylax bedriagae 1 

Pelophylax ridibundus  (Rana 

ridibanda) 

108 

Salamandridae Neurergus crocatus 11 

Neurergus derjugini 12 

Ommatotriton vittatus 0 

Salamandra infraimmaculata 2 



KAKY et al. – Distribution and conservation of Iraqi amphibians 

 

733 

Table 2. List of 19 environmental predictors available in the 
WorldClim Version 2 dataset. The highlighted one were used to 

build the model after reducing collinearity using Variation 
Inflated Factors  (VIF) 
 

BIO1 = Annual Mean Temperature 

BIO2 = Mean Diurnal Range  (Mean of monthly  (max temp - min temp) 

BIO3 = Isothermality  (BIO2/BIO7)  (* 100) 

BIO4 = Temperature Seasonality  (standard deviation *100) 

BIO5 = Max Temperature of Warmest Month 

BIO6 = Min Temperature of Coldest Month 

BIO7 = Temperature Annual Range  (BIO5-BIO6) 

BIO8 = Mean Temperature of Wettest Quarter 

BIO9 = Mean Temperature of Driest Quarter 

BIO10 = Mean Temperature of Warmest Quarter 

BIO11 = Mean Temperature of Coldest Quarter 

BIO12 = Annual Precipitation 

BIO13 = Precipitation of Wettest Month 

BIO14 = Precipitation of Driest Month 

BIO15 = Precipitation Seasonality  (Coefficient of Variation) 

BIO16 = Precipitation of Wettest Quarter 

BIO17 = Precipitation of Driest Quarter 

BIO18 = Precipitation of Warmest Quarter 

BIO19 = Precipitation of Coldest Quarter 

 
 
 

 

To predict the impact of climate change, models were 

projected into one future time  (2050) under different IPCC 

scenarios of the 5th assessment  (Riahi et al. 2017; van 

Vuuren et al. 2011). The predicted environmental data were 

downloaded from WorldClim for two 'representative 

concentration pathways'  (RCP 2.6 and RCP 8.5), generated 

by the UK Hadley Centre for Climate Prediction and 

Research  (Hadgem2_es). RCP 2.6 characterizes an 

optimistic prediction representing a medium level of 

population growth, and very low greenhouse gas 
concentrations; while RCP 8.5 represents a pessimistic 

prediction characterized by high population growth and 

high levels of greenhouse gas concentrations by the end of 

2100  (Wayne 2013). 

Species distribution modeling
 

Maximum Entropy  (Maxent) v3.4.1k  (Phillips et al. 

2006) was chosen as the modeling method because it uses 

presence-only data and has been used extensively for 

species distribution modeling (e.g. Elith et al. 2011; Slater 

and Michael 2012; de Araújo et al. 2014; Kaky and Gilbert 

2017). It generates a sample of 10000 points from the area 
of study to characterize the environmental background  

(Anderson and Gonzalez 2011). 

The default settings in Maxent have proven ability to 

achieve good performance  (Phillips and Dudik 2008), and 

so were used here. I chose Cloglog output format  (see 

Phillips et al. 2017), maximum iterations = 500, 

convergence threshold = 10-5, regularization multiplier =1, 

10% percentile presence threshold rule and cross-validation 

[K=10] with 10 replicates [for estimation error]. In the last 

setting, occurrence records are divided into K equal-sized 

groups, one of which is used for evaluation and the rest for 

calibration of the model. Every group is utilized once as an 

evaluation dataset, and every occurrence point appears 

exactly once in an evaluation dataset  (Peterson et al. 
2011). Here a target-group bias file has been used followed  

(Phillips et al. 2006), using SDMtools  (Brown et al. 2017) 

in ArcGIS using a Gaussian kernel estimation function, this 

bias file will promote to select more background points 

from biased areas.  

To evaluate model accuracy, I used the area under the 

curve  (AUC: Fielding and Bell, 1997; Pearce and Ferrier 

2000) and true skill statistic  (TSS: Allouche et al. 2006). 

AUC values range from 0 to 1: close to one indicates 

perfect discrimination, while values close to 0.5 are no 

better than random; values less than 0.5 indicate a 
performance worse than random  (Phillips et al. 2006). TSS 

values range between -1 to +1: any value close to +1 shows 

perfect model performance, whereas close to -1 indicates 

that model performance is no better than random  

(Allouche et al. 2006).  

Binary maps  (suitable/non-suitable) can be created in 

Maxent from the probabilities of occurrence by choosing a 

threshold rule  (see Liu et al. 2005). In this study, the 10% 

percentile presence threshold rule was used to allow for 

georeferencing errors  (Morueta-Holme et al. 2010; Kaky 

and Gilbert 2017). The threshold was applied to each of the 
ten replicate maps from the cross-validation. Maxent does 

not naturally give an average binary map over all the 

replicates, and so this was made manually by allotting 

‘presence’ to a pixel that had presence values in more than 

50% of the model runs  (i.e. >5 replicates). The process 

was carried out using the Raster Calculator of 

ArcGIS10.2.2. 

Losses and gains were calculated from the binary maps 

for each species by subtracting the future from current map  

(following Broennimann et al. 2006; Hatten et al. 2016; 

Thuiller et al. 2005) to identify the areas of consistent 

presence, expansion, and contraction under each of the 
climate change scenarios. Finally, the habitat suitability 

maps were used to calculate the niche overlap among the 

species, and also between the current and future maps of 

each species  (Warren et al. 2008; Widick and Bean 2019). 

This relies on habitat suitability being a suitable estimate of 

the niche  (Wiens et al. 2010; Widick and Bean 2019). 

Here I used Schoener's D  (Warren et al. 2008) 

implemented by ENMTools: this index ranges between 0  

(no overlap) to 1  (total overlaps). 
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Figure 2. A. Occurrence records for all species; B-D. Pattern of predicted species richness  (really, the sum of habitat suitability) of 

Iraqi amphibians for the current  (B) and future scenarios  (C, D). The color ramp for the pattern of predicted species richness runs from 
red  (high) to blue  (low) 
 
 

 
 
Figure 3. Average importance of the predictor variables based on 
both percent contribution and permutation importance in the 
MaxEnt final models 

RESULTS AND DISCUSSION 

Results 

The performance of the models was very good in terms 

of the mean AUC  (0.90 ± 0.07 SD) and TSS  (0.69 ± 

0.11), which shows that the models were suitable for use in 
extrapolation  (see Table 3). The good AUC and TSS 

values were recorded for species with both low and high 

sample sizes. The most important environmental variables 

in the models were Bio12  (annual precipitation) for the 

three frogs and Bio8  (mean temperature of the wettest 

quarter) for the two salamanders, as assessed by both 

indicators  (percent contribution and permutation 

importance)  (Figure 3, Figure 7, Table 4). The response 

curves show that the frogs prefer climate conditions of 

annual rainfall between 150-800 mm, and mean 

temperatures of the wettest quarter of between 0-18°C, 

while the salamanders prefer wetter and colder conditions  
(Figure 4). The models predict that the species survive in 

wet climate conditions.  

In the current time, the northern and northeastern parts 

of Iraq show the highest predicted habitat suitability for 

amphibians  (Figure 2.B), especially around northern cities 

such as Mosul, Dohuk, Erbil, Sulaymaniyah and some parts 

of Kirkuk. The model predicts some areas with high 

suitability between Kut and Amarah in southeastern Iraq 

where there are few occurrence records  (cf. Figure 2.B). 

There were also areas of high habitat suitability across the 

entire border between Iraq and Iran, from north to south  

(Figure 2.B; Figure 5). The future climate scenarios 
showed slightly larger habitat suitability overall  (Figure 

2.C, D), especially under the pessimistic RCP8.5  (Figure 

2.D). There is high consistency in the pattern of predicted 

habitat suitability between the current and future scenarios  

(Figure 2.B-D; Table 5). The net predicted habitat 

suitability in the future decreased slightly for the two 

salamanders  (Table 5). The predicted expansion of habitat 

suitability for frogs was primarily towards the northeast 

and the border between Iraq and Iran.  

From the binary maps, all species both gained and lost 

areas of habitat suitability under each of the predicted 

A B 

C D 
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future scenarios  (Table 6). Under RCP2.6, three 

species gain habitat suitability  (Hyla savignyi by 27,989 

km²; Rana ridibunda by 6,333 km2, and Neurergus 

crocatus by 571 km²), while two species lost habitat 

suitability  (Bufo viridis by 10,512 km² and Neurergus 

microspilotus by 9,301 km2)  (for more details, see Table 6 

and Figure 6). Under the RCP8.5 scenario, four of the 

species gained habitat suitability, while Neurergus 

microspilotus lost habitat suitability. Thus, Neurergus 

microspilotus was predicted to lose habitat suitability under 
both future scenarios  (see Table 6; Figure 6). 

The results showed a high intraspecific niche overlap 

between the current and future scenarios for all species. 

The niche similarity ranged between 0.87 and 0.98. Among 

species, there was a high niche overlap between the frogs, 

while the salamanders showed moderate niche overlap. In 

general, there were low niche overlaps between any frog 

and either salamander  (see Table 7 for the details). 

Discussion 

These results highlight the importance of establishing 

conservation planning to counter the effects of climate 
change for Iraqi amphibians, especially for species that are 

at risk of extinction. This is the first time that species 

distribution modeling has been applied to Iraqi amphibians, 

and further, there is no study applying SDM to climate 

change for any Iraqi taxon. This study is also novel in 

comprehensively mapping the occurrence locations of the 

Iraqi amphibians.
 

 Evaluation of model performance is a vital step to 

determining the accuracy of SDMs and then the accuracy 

of the distributional predictions  (Peterson et al. 2008). The 

results indicated good performance in terms of mean AUC 
and TSS scores: models are more reliable when both 

evaluation statistics agree  (Beauregard and de Blois 2014). 

Some studies have stated that AUC by itself is not enough 

as an indicator of model accuracy  (Austin 2007; Lobo et 

al. 2008), because of getting high AUC scores when there 

are few records  (Jimenez-Valverde et al. 2008; Lobo et al. 

2008). However, many large studies show that model 

accuracy does not depend on the number of occurrence 

records used to run the model  (Elith et al. 2006; Newbold 

et al. 2009). I used two methods to evaluate the accuracy of 

my models  (cf. Kaky and Gilbert 2016; Gillard et al. 2017; 

Smeraldo et al. 2018), but many recent studies use just 
AUC and these have apparently achieved good model 

performance  (Phillips et al. 2006; Elith et al. 2006; Warren 

and Seifert 2011; Phillips et al. 2017). 

Environmental conditions of mainly temperature and 

precipitation variables can be used to predict how species 

are distributed  (Hannah 2011). My models show that these 

amphibians are more affected by annual precipitation and 

the mean temperature of the wettest quarter, perhaps 

unsurprising since they tend to live in wet conditions, 

especially the salamanders which live entirely in water. All 

species prefer wet climate conditions, and the response 
curves suggest that the frogs prefer precipitation between 

150 and 800 mm, but 200 to 1000 mm and cooler climate 

for the salamanders, which live in streams and mountain 

brooks with survival dependent on water quality  (Sayım et 

al. 2009). The three frogs have high interspecific niche 

overlap demonstrating that they share the same climate 

conditions currently and under future climate scenarios, 

and hence probably share resources as well, so protection 

measures for these species are relatively straightforward in 

terms of reserves. Previous studies are also shown that 

different populations share the same environmental 

variables  (Williams, 1992; Bean et al. 2014), with 

implications for conservation planning  (Widick and Bean 

2019). The salamanders have only moderate interspecific 
niche overlap, implying that they do not live in the same 

climate conditions, and hence will require separate 

consideration in conservation planning. The same is true 

between the frogs and salamanders, which require very 

different environmental conditions, and hence should be 

treated differently in terms of conservation  (Widick and 

Bean 2019).  

 
Table 3. The number of occurrence records of the species, the 
mean values of AUC and TSS, and the global IUCN Red List status. 
 

Species 
No. of 

records 
AUC TSS 

IUCN 

status 

Bufo viridis  (Bufotes 
variabilis) 

99 0.86 0.64 DD/ 
Unknown 

Hyla savignyi 59 0.82 0.54 LC/ stable 
Rana ridibanda  
(Pelophylax ridibundus) 

108 0.87 0.63 LC/ 
increasing 

Neurergus crocatus 11 0.97 0.80 VU/ 
decreasing 

Neurergus microspilotus  12 0.99 0.82 CR/ 

decreasing 

 
 
Table 4. The important variables for each species. 
 

Species Important variables 

Bufo viridis Annual precipitation 
Hyla savignyi Annual precipitation 
Neurergus crocatus Mean Temperature of Wettest Quarter 
Neurergus microspilotus Mean Temperature of Wettest Quarter 
Rana ridibanda Annual precipitation 

 
 
Table 5. Predicted area of habitat suitability per species for 

current and future scenarios, calculated from the binary maps. 
 

Species Models 
Area 

 (km²) 
% of land 

Bufo viridis Current 124774 20 
RCP 2.6_2050 115146 19 
RCP 8.5_2050 132359 21 

Hyla savignyi Current 139347 23 
RCP 2.6_2050 165622 27 
RCP 8.5_2050 159699 26 

Rana ridibanda Current 115464 19 
RCP 2.6_2050 119335 19 
RCP 8.5_2050 123188 20 

Neurergus crocatus Current 20029 3 
RCP 2.6_2050 19873 3 

RCP 8.5_2050 20130 3 
Neurergus microspilotus Current 9988 2 

RCP 2.6_2050 9263 1.5 

RCP 8.5_2050 9534 1.5 
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Table 6. Gains and losses of habitat suitability for each species between the current time and 2050 under two different climate scenarios  
(in km2) 
 

Species  
RCP 2.6_ 2050 RCP 8.5_2050 

Suitability km2 Gain km2 Loss km2 Suitability km2 Gain km2 Loss km2 

Bufo viridis 114,262 884 10,512 121,264 11,095 3,510 
Hyla savignyi 137,633 27,989 1,714 136,973 22,726 2,374 
Rana ridibanda 113,002 6,333 2,462 113,549 9,639 1,915 
Neurergus crocatus 19,302 571 727 19,959 171 70 
Neurergus microspilotus 9,104 159 884 9,301 233 687 

 
 

 

 
 
Figure 4. Response curves for the most important variables estimated by MaxEnt 
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Figure 5. Pattern of predicted habitat suitability of Iraq’s amphibians for each species at the current time and under future climate 
scenarios  (RCP2.6 and RCP8.5_2050). 
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Figure 6. Pattern of predicted species loss and gain for each species 
 
 
 

 
 
Figure 7. Current and future climate predicted maps for both Bio8 and Bio12 
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Table 7. Niche overlap among and within species between current and future scenarios. High values mean high niche overlap and low values mean low niche overlap 
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Bufo_viridis_current 1 0.98 0.96 0.89 0.87 0.87 0.91 0.98 0.96 0.40 0.38 0.39 0.26 0.26 0.25 
Bufo_viridis_2.6  1 0.97 0.89 0.90 0.90 0.92 0.91 0.90 0.39 0.38 0.39 0.26 0.26 0.25 
Bufo_viridis_8.5   1 0.89 0.89 0.90 0.91 0.90 0.90 0.40 0.38 0.39 0.27 0.26 0.26 

Hyla_savignyi_current    1 0.98 0.97 0.87 0.86 0.85 0.40 0.38 0.39 0.27 0.27 0.26 
Hyla_savignyi_2.6     1 0.97 0.87 0.86 0.86 0.40 0.38 0.39 0.27 0.26 0.26 
Hyla_savignyi_8.5      1 0.87 0.86 0.86 0.40 0.38 0.39 0.27 0.27 0.26 
Rana_ridibanda_current       1 0.98 0.96 0.40 0.39 0.40 0.24 0.24 0.23 
Rana_ridibanda_2.6        1 0.97 0.40 0.39 0.40 0.23 0.23 0.24 
Rana_ridibanda_8.5         1 0.40 0.39 0.40 0.24 0.24 0.23 
Neurergus_crocatus_current          1 0.96 0.98 0.55 0.54 0.54 
Neurergus_crocatus_2.6           1 0.97 0.54 0.52 0.53 

Neurergus_crocatus_8.5            1 0.55 0.54 0.54 
Neurergus_microspilotus_current             1 0.95 0.97 
Neurergus_microspilotus_2.6              1 0.96 
Neurergus_microspilotus_8.5               1 
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Habitat suitability under current and future scenarios 

appear almost stable, with more habitat suitability toward 

the northeastern parts of the study area and some scattered 

locations in the south-east. Many recent studies suggest 

that species are shifting to the north  (Parmesan and Yohe 

2003; Root et al. 2003), which is consistent with my results 

because amphibians prefer the wet conditions more 

available in the north-east  (Sayım et al. 2009; Najafi-Majd 

and Kaya 2013). There are no studies of Iraqi amphibians 

for comparison. To protect and conserve these species, we 

cannot afford to wait for perfect data  (Kaky and Gilbert 
2016, 2017), especially in conflict countries such as Iraq. 

On the other hand, the target-group methods in MaxEnt 

applied to reduce this bias in our data  (Phillips et al. 2009). 

The complexity of ecological systems shows the 

fundamental limits to modeling approaches because 

prediction uncertainties are unavoidable, but SDM 

techniques can give useful information  (Pearson and 

Dawson 2003) especially when there are no range maps for 

any species and no local experts  (Hawkins et al. 2008; 

Vasconcelos et al. 2012). The two salamanders occur only 

in very small locations, and based on the loss-gain maps 

these species will tend to lose more than they gain under 
climate change. Local disasters such as diseases, drought 

and land transformation by human activities, can easily 

cause extinction  (Lawton and May 1995). The three frogs 

are predicted to gain more than lose in habitat suitability.  

The endangered salamanders are very vulnerable to 

human activities, habitat loss, habitat changes, over-

harvesting and drought  (Papenfuss et al. 2009). In some 

areas sheep and cattle destroyed their habitat through 

overgrazing and pollution of rivers and streams; local 

people use the streams for drinking water, and they kill 

salamanders because they expect them to be poisonous  
(Najafi-Majd and Kaya 2013). Globally all amphibians face 

the risk of extinction because of chytrid fungi  

(Monastersky 2014). Thus, urgent conservation for these 

salamanders is vital, as well as increasing the 

environmental awareness of the local authorities and local 

people in protecting them. Further surveys are very 

important for all five species to find new populations and 

new locations so that their niches can be mapped more 

accurately and reassessments of their Red List status can be 

carried out.  

In conclusion, SDM is a good approach to estimate 
habitat suitability even with sparse data; it helps in guiding 

new surveys to save time and money. It does have 

limitations evident in this study, for example, the number 

of occurrence records, sampling bias, and poor knowledge 

of geographical distribution. The SDMs in this study also 

lacks any input of possible biotic influences, but this will 

require more sophisticated biological information about 

each species. Truly predictive biological models will 

incorporate the important biological mechanisms  (e.g. 

evolution, environment, physiology, demography, 

dispersal, and species interactions: Urban et al. 2016) in a 

biologically realistic way, but such realism is a long way 
off. However, this is the first evaluation of possible 

changes in the distribution of Iraq’s amphibians under 

climate change, providing important information for further 

studies. Despite their uncertainties, SDM methods 

represent an important tool to fight the Wallacean shortfall  

(Whittaker et al 2005; Hortal et al 2015), especially 

prediction under climate change scenarios  (Guisan et al. 

2013). These results can be used to spur preliminary action 

for conservation in Iraq by decision-makers. They supply 

new data for national and global evaluations, and will help 

find the best areas for nature reserves in Iraq to increase the 

proportion of protected land in Iraq, and perhaps to achieve 

the Aichi target 11 by 2020. 
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