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Abstract. Asanok L, Kamyo T, Marod D. 2020. Maximum entropy modeling for the conservation of Hopea odorata in riparian forests, 
central Thailand. Biodiversitas 21: 4663-4670. Hopea odorata plays a dominant role in both ecologically and economically in Thailand. 
We analyzed potentially suitable areas for H. odorata in the riparian zone of the Chao Phraya River using the software MaxEnt. 

Modeling included 164 occurrence records along with 19 climate-related variables, slope, aspect, and elevation. Precipitation was the 
key climatic variable influencing the distribution of H. odorata. Riparian areas along the Chao Phraya that were predicted to be highly 
suitable for this species were located in the provinces of Nakhon Sawan, Ang Thong, Phra Nakhon Si Ayutthaya, Pathum Thani, 
Nonthaburi, and Bangkok. The ROC AUC score was 0.891, indicating that MaxEnt is an excellent tool for predicting suitable regions 
for the restoration or cultivation of commercially and ecologically valuable species such as H. odorata. Models such as what we have 
presented here can facilitate habitat conservation and sustainable resource use for rare and important plants. 
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INTRODUCTION 

The most pressing task for forest researchers and 

managers today is to conduct quantitative assessments of 

deforestation and afforestation and apply the obtained 

results to tackle issues related to forest change. Native tree 

species are suitable for reclaiming degraded lands as well 

as for timber production (Montagnini and Jordan 2005; 

Sakai et al. 2009; Lamb 2010; Zimmer et al. 2018). Hopea 

odorata Roxb. (Dipterocarpaceae) is an important timber 

tree that plays an outsized role in the ecology and 
economics of riparian forests in Thailand (Orwa et al. 

2009; Asanok et al. 2017). H. odorata’s timber is a strong, 

light hardwood that is used for both heavy and light 

construction, furniture, veneer, and other applications. In 

terms of other uses, the bark has a high tannin content and 

therefore is suitable for tanning leather (Hossain et al. 

2015). H. odorata is an evergreen, late-successional tree 

species that require shade and a high soil moisture content 

for natural regeneration. It is suitable for reclamation 

planting and is also widely planted as an ornamental and 

shade tree (Bunyavejchewin et al. 2003; Sakai et al. 2009; 

Ashton and Kaettle 2012). The species is restricted to 
tropical forests in Myanmar, Thailand, Laos, Vietnam, and 

northern Peninsular Malaysia (Bunyavejchewin et al. 2003; 

Satiraphan et al. 2012). Typical habitats include low-relief 

areas or riparian forests on deep, rich soils, often along the 

banks of streams, and wet areas up to 600 m in elevation. It 

reaches optimal growth is reached in areas with > 1,200 

mm of annual precipitation and a mean annual temperature 

of 25-27°C (Narong and Sobon 2014).  

The Chao Phraya River lies at the center of Thai 

economic and social development region, running through 

11 cities along its 372 km length. H. odorata is the 

dominant species within the river’s riparian areas. 

However, disturbance associated with urbanization and 

agriculture has frequently degraded these riparian forests 

and local and regional land-use changes have been linked 

to declines in H. odorata populations (Asanok et al. 2017). 

Ecological modeling can be used to estimate the 

distribution of H. odorata in Thailand, and perhaps more 
critically, can provide insight into the environmental 

factors affecting its distribution. In this study, we analyzed 

habitat and environmental data with an aim to better 

conserve and manage riparian forests along the Chao 

Phraya River.  

Techniques including statistical modeling and 

geographic information systems (GIS) have been widely 

applied in ecology for conservation and resource 

management (Guisan and Zimmermann 2000; Warren et al. 

2008; Brito et al. 2009; Abdelaal et al. 2019). In particular, 

species distribution models (SDMs) exploit the associations 

between site-level species occurrences and the 
environmental features of those locations to make 

predictions in space and/or time (Franklin 2009; Fois et al. 

2016; Amici et al. 2017; Fois et al. 2016; Safaei et al. 2018; 

Abdelaal et al. 2019). For the purpose, species Occurrence 

records are obtained through field surveys as well as from 

herbarium and museum databases. Maximum entropy 

(MaxEnt) is a relatively standard model machine learning 

protocol for predicting species distributions. It has been 

widely used to predict suitable areas for endangered 

species, assesses climatic suitability for species, and 
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provide priority assessments for conservation (Zheng et al. 

2016; Koch et al. 2017). It is a niche modeling framework 

that generalizes specific observations of species presence 

and does not require absence points. Its key advantages are 

that it only requires presence data, which are often more 

widely available, can accept both continuous and 

categorical data, and employs efficient deterministic 

algorithms. Furthermore, the output is continuous and 

generative and the model is suitable for small sample sizes. 

Despite advancements in plantation management, H. 
odorata is considered a threatened species with a reduced, 

degraded natural distribution. Therefore, we focused on H. 

odorata as a representative of the broader issues of 

conservation and sustainable use of riparian plants along 

the Chao Phraya River. Our objectives were to characterize 

the habitat and niche of H. odorata based on field 

observations, identify landscape-scale environmental 

correlates through niche-based models, and identify 

suitable areas for H. odorata conservation. 

MATERIALS AND METHODS  

Study area and species occurrence data  

The study area was located in the floodplain of the 

riparian zone of the Chao Phraya River, which begins in 

the Pak Nam Pho sector of Nakhon Sawan Province and 

ends in the Pak Nam sector of Samut Prakan Province 

(Figure 1). The Chao Phraya River is the main river in 

central Thailand and its origin, in Nakhon Sawan Province, 

is quite far from the ocean, whereas the mouth, located in 

Samut Prakan Province, forms an estuary along the coast of 
the Gulf of Thailand. We focused on the floodplain, here 

meaning the area between the water’s edge and the high-

water mark. We used the highest watermark recorded from 

flooding in 2011 as a cutoff, which was between 0-30 m in 

elevation depending on the area (Hydro and Agro 

Informatics Institute, 2012; Gale and Saunders 2014). The 

resulting study area was 14,252 km2 in size (Figure 1) 

 

 

 
 
Figure 1. Study area and locations of Hopea odorata populations (n = 164) recorded during randomized field surveys 
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Table 1. Nineteen candidate bioclimatic factors obtained from 

WorldClim for use in MaxEnt models 
 

Code  Parameter 

BIO1  Mean annual temperature 
BIO2* Mean diurnal range (the mean monthly difference 

between maximum and minimum temperature) 

BIO3* Isothermality ((BIO2/BIO7) × 100) 
BIO4* Temperature seasonality (standard deviation × 100) 
BIO5* Maximum temperature in the warmest month 
BIO6* Minimum temperature in the coldest month 
BIO7* Annual temperature range (BIO5-BIO6) 
BIO8  Mean temperature of the wettest quarter 
BIO9  Mean temperature of the driest quarter 
BIO10* Mean temperature of the warmest quarter 
BIO11* Mean temperature of the coldest quarter 

BIO12* Annual precipitation 
BIO13* Precipitation in the wettest month 
BIO14  Precipitation in the driest month 
BIO15  Precipitation seasonality (coefficient of variation) 
BIO16* Precipitation in the wettest quarter 
BIO17  Precipitation in the driest quarter 
BIO18  Precipitation in the warmest quarter 
BIO19* Precipitation in the coldest quarter 

Note: *)Asterisks indicate variables selected for use in MaxEnt 
models 
 
 
 

Hopea odorata locations were obtained using 

randomized field surveys in the study area. The field study 

period was from January 2018 to December 2018. Old-

growth riverine forests along the Chao Phraya River were 

selected for study. Plant samples were collected and 

herbarium specimens were prepared and submitted to the 

Forest Herbarium at the Department of National Parks, 

Wildlife and Plant Conservation, Bangkok, for 
identification and validation. A total of 164 sites with 

populations of H. odorata were identified (Figure 1) and 

their geographical coordinates were recorded using a 

Garmin GPS 76 handset (Jaryan et al. 2013). 

Modeling procedure 

Species location data were appropriately formatted as 

inputs for MaxEnt. In addition to occurrence data, 

environmental parameters are necessary for MaxEnt 

modeling. We used 19 bioclimatic parameters available from 

WorldClim-Global Climate Data version 2.0 (WorldClim, 

https://www.worldclim.org/data/bioclim.html) for the study 

area. These variables represented annual and seasonal 
trends, including mean temperature of the warmest and 

coldest quarters, annual precipitation, and annual 

temperature range, as well as limiting environmental 

factors such as the temperature of the coldest and hottest 

months (Table 1). Data were available at a 30 arc-second 

resolution and were obtained in GRID format (Hijmans et 

al. 2005). All files were converted into ASCII format using 

Arc GIS version 10.6 (Scheldeman and Zonneveld 2010; 

Kamyo and Asanok 2020) for use in MaxEnt. Given that a 

species ecological niche is invariably greater than its 

geographical range, a supported approach is to use a 
maximum amount of information when modeling species 

distributions and determining variables directly linked to 

distribution. In addition, we performed ground validation 

during field surveys. 

Prior to modeling, we checked for correlations among 

the predictor variables, as highly correlated input variables 

are a known source of error in spatial models (Dormann et 

al. 2007), in R version 3.4.1 (R Core Development Team). 

We used a correlation coefficient cutoff of 0.9. Based on 

the resulting correlation coefficients, knowledge of the 

species’ ecology, and relevant environmental factors, we 

selected 12 WorldClim variables, as well as aspect, slope, 
and elevation (from the Shuttle Radar Topography Mission 

Digital Elevation Model; http://srtm.usgs.gov/index.php), 

for use in MaxEnt models. 

We used MaxEnt version 3.4.1, available from 

http://biodiversityinformatics.amnh.org/opensource/maxent, 

for analyses. The MaxEnt output is a continuous prediction 

of habitat suitability for a given species from 0 (lowest 

suitability) to 1 (maximum suitability) (Elith et al. 2010; 

Zhu et al. 2017). The model also generates response curves 

for each predictor variable and uses the jackknife method 

to estimate the relative influence of each predictor variable 
(Fielding and Bell 2007; Khanum et al. 2013; Swanti et al. 

2018). The environmental variables and the species 

occurrence data H. odorata were loaded into the MaxEnt 

model; 75% of the location data were used for training, and 

the remaining 25% were used to test the predictive ability 

of the model. The model ran either 1000 iterations of this 

processesor continued until a convergence threshold of 

0.00001 was met. We evaluated model performance using 

the omission-commission rate, a threshold-dependent 

binomial test based on omissions and predicted area 

(Phillips and Dudk 2008). The omission rate is the 

proportion of test localities that fall into pixels not 
predicted as suitable, and the predicted area is the 

proportion of all pixels that are predicted to be ideal 

(Phillips et al. 2006; Elith et al. 2011). We also used 

threshold-independent receiver operating characteristic 

(ROC) curves and area under the ROC curve (AUC) for 

model evaluation, where AUC is a measure of model 

performance. An ROC curve plots sensitivity (true 

positives) and fall-out (false positives). Here, fall-out was 

defined as 1- specificity and specificity were defined as the 

predicted area. Four arbitrary categories of habitat 

suitability were defined, based on the predicted habitat 
suitability results for H. odorata (IPCC, 2007; Wei et al. 

2019): least suitable (0-0.2), low suitability (0.2-0.4), 

medium suitability (0.4-0.6), and high suitability (0.6-1). 

RESULTS AND DISCUSSION 

Model performance  

Most ecological models are evaluated using statistical 

tests or indices or by field validation. As discussed, we 

evaluated model performance using the omission-

commission rate (Phillips and Dudk 2008), where the 

omission rate was calculated on both the training and test 

datasets (Figure 2; Anderson et al. 2003). We found good 
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agreement between the omission rate for the training data 

and the predicted omission (Figure 2). The red line 

indicates the mean area, the black line indicates the 

predicted omission rate, and the light blue line indicates 

omission rates of the model training samples. The omission 

rate is calculated using both the presence records used for 

training and the test records (Anderson et al. 2003). The 

threshold-independent receiver operating characteristics 

(ROC) curve was also analyzed. ROC performance is 

represented by the area under curve (AUC; Figure 3). The 
ROC curve is a plot of sensitivity (the true positive 

fraction), i.e. the absence of omission error and the 

proportion of incorrectly predicted observed absences (1 - 

specificity), or the false-positive fraction, i.e. commission 

error. The specificity is defined using the predicted area, 

rather than true commission. An AUC value of 0.50 

indicates that the model is close to random and is a poor 

predictor, whereas a value of 1 indicates optimum model 

accuracy (Swets 1988). Model results should be rigorously 

evaluated, as a species’ ecological niche covers a broader 

area than the geographical range of the species, and not all 
suitable areas are inhabited. Thus, using the maximum 

amount of information available for species distribution 

and the variables directly linked to species distribution is 

recommended. In this context, sites were surveyed for the 

presence of H. odorata and for predicted presence, to 

ground-truth the model. In the model, the lines of omission 

from the training data were close to predicted omission 

rates. 

AUC values < 0.5 indicate that a model is close to 

random and has poor predictive ability, whereas a value of 

1 indicates perfect prediction (Swets 1988). We found an 
AUC value of 0.891 for our training dataset, indicating 

excellent predictive ability (Figure 3). 

Identification of suitable areas for H. odorata 

MaxEnt produces a continuous raster with values from 

0 to 1, representing the lowest to highest habitat suitability, 

respectively (Yackulic et al. 2013; Xu et al. 2020) There 

are no rules to set thresholds to divide suitable from 

unsuitable habitat; rather, threshold determination depends 

on the user’s objectives and varies between species and 

applications. MaxEnt provides threshold values based on a 

variety of statistical measures in the maxentResults.csv file. 

Some of the most common threshold determination 
methods include using a minimum training presence 

logistic threshold, a 10th percentile training presence 

logistic threshold, and an equal training sensitivity and 

specificity logistic threshold (Phillips et al. 2006). We 

selected a 10th percentile training presence logistic 

threshold (Kamyo and Asanok 2020). This threshold was 

applied using the average of all runs performed to 

reclassify the averaged model results to match the threshold 

values in Arc GIS. Thus, our final map had four 

classifications (Figure 4). Of the total study area (12,044.76 

km2), 9.03% (1,087.90 km2) was classified as highly 
suitably for H. odorata, 19.61% (2,362.22 km2) was 

moderately suitable, 31.34% (3,774.91 km2) had low 

suitability, and 40.02% (4,819.73 km2) was classified as 

least suitable. Previous studies of H. odorata have reported 

its habitat as riparian and low-relief areas in tropical forests 

(Bunyavejchewin et al. 2003). Our model indicated that the 

low-lying areas of Nakhon Sawan, Ang Thong, Phra 

Nakhon Si Ayutthaya, Pathum Thani, Nonthaburi, and 

Bangkok contained areas with the greatest probabilities of 

occurrence of H. odorata, whereas moderate probability 

areas were located in Lop Buri, Sing Buri, and Samut 
Prakan. 

 

 

 
Table 2. Correlation coefficients between 19 bioclimatic variables obtained from WorldClim for the study area. Asterisks indicate a 
correlation coefficient > 0.90. Bioclimatic variables are described in Table 1 
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BIO1 1 0.27 -0.4 0.39 0.28 -0.32 0.3 0.12 -0.36 0.39 -0.28 -0.43 -0.29 0.14 0.15 -0.31 -0.17 -0.24 -0.32 
BIO2  1 -0.86 0.95* 0.99* -0.97 0.99* 0.28 -0.7 0.96* -0.93 -0.9 -0.99 -0.65 -0.61 -0.97 -0.73 -0.67 -0.95 
BIO3   1 -0.93 -0.91 0.92* -0.92 -0.28 0.82 -0.9 0.9 0.83 0.88 0.61 0.5 0.89 0.71 0.57 0.9 
BIO4    1 0.95 -0.99 0.98* 0.24 -0.87 0.97* -0.98 -0.94 -0.97 -0.57 -0.46 -0.97 -0.77 -0.66 -0.96 
BIO5     1 -0.96 0.99* 0.3 -0.72 0.96* -0.93 -0.87 -0.98 -0.69 -0.65 -0.97 -0.73 -0.65 -0.95 
BIO6      1 -0.99 -0.24 0.85 -0.96 0.98* 0.92 0.98* 0.63 0.5 0.98* 0.8 0.66 0.97* 
BIO7       1 0.27 -0.78 0.97* -0.96 -0.91 -0.99 -0.67 -0.59 -0.98 -0.77 -0.66 -0.96 
BIO8        1 -0.15 0.18 -0.29 -0.11 -0.29 -0.11 -0.49 -0.26 0 -0.13 -0.29 

BIO9         1 -0.75 0.89 0.79 0.76 0.44 0.24 0.8 0.71 0.59 0.81 
BIO10         1 -0.92 -0.94 -0.96 -0.55 -0.46 -0.96 -0.73 -0.61 -0.93 
BIO11          1 0.89 0.95* 0.59 0.51 0.96* 0.76 0.65 0.94* 
BIO12           1 0.92* 0.4 0.25 0.94* 0.72 0.66 0.9 
BIO13            1 0.62 0.57 0.99* 0.74 0.7 0.95* 
BIO14             1 0.6 0.57 0.77 0.42 0.69 
BIO15              1 0.55 0.2 0.33 0.47 
BIO16               1 0.71 0.7 0.94* 
BIO17                1 0.59 0.86 

BIO18                 1 0.67 
BIO19                   1 
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Figure 2. Omission rates versus predicted area for a MaxEnt model of predicted habitat suitability for Hopea odorata 

 

 
 

 
 

 
Figure 3. Results of area under the receiver operating characteristics curve (ROC-AUC) analyses for a MaxEnt model of habitat 
suitability for Hopea odorata 
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Figure 4. MaxEnt predicted habitat suitability within the study area for Hopea odorata 
 
 
 

Correlations of environmental factors 

Climatic factors set the broad limits to plant species 

distributions at the regional to global level (Shimwell et al. 

1982; Woodward 1987; Prentice 1992; Taylor and 

Hamilton 1994). The climate variables included in this 

study and their relative contributions to model predictions 

are shown in Figure 5. Elevation was one of the most 

important environmental variables considered, with the 

greatest gain upon inclusion, and it represented 30% of the 
model’s explanatory power when used in isolation. Annual 

precipitation caused the largest decrease in gain when 

omitted from the model. Minimum temperature contributed 

to the lowest gain when included in the model. Therefore, 

precipitation has important implications for the distribution 

and spread of H. odorata. In field surveys, this species was 

most often observed along streams and in flooded areas.  

Management implications 

Spatial data allow for the interpretation of species 

distributions, threats, and habitat requirements. The 

conservation status of a species is generally assessed by 

synthesizing information on known populations, changes in 

historical range, and evidence of vulnerability or threats to 

its required habitats. Maps using features such as natural 

regions or physiographic areas are typically the best format 

for presenting and understanding tree distribution data. 

SDMs allow for understanding species-habitat relationships 

by combining precise location data with microclimate, 

topographical, and edaphic factors. For threatened taxa, 

SDMs are vital to understanding the influence of biotic and 
abiotic factors in distribution patterns. The SDM presented 

here for H. odorata identifies potential areas along the 

Chao Phraya for the reforestation and conservation of this 

important species, both of which could act to reverse the 

observed decline in its natural populations. From a socio-

ecological perspective, awareness of the importance of H. 

odorata in riparian systems is low, which is detrimental to 

conservation efforts. Increasing awareness of the ecological 

role of this species is crucial, and we hope that identifying 

areas with high suitability for its conservation will assist 

with future management efforts. 
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Figure 5. Jackknife estimates of relative variable contributions to training gain for Hopea odorata, obtained using MaxEnt 
 
 
 
 

 

In conclusion, we used MaxEnt to predict the habitat 

distribution pattern of a dominant tree species using 

occurrence records and salient environmental variables. We 

identified 9% of the total study area as being suitable for H. 

odorata. Our habitat distribution map can assist in 

understanding the potential distribution of this species, 

particularly by highlighting high probability areas, and it 

provides a tool for land management in and around existing 

H. odorata populations. Furthermore, our SDM can be 
used to assist in locating new populations by identifying 

priority survey sites, and in the design of future 

conservation priority or resource management zones with 

an emphasis on the ecological boundaries for this species. 

As well, our map can be used to identify high-priority 

restoration sites. The approach described here is applicable 

to predicting suitable habitat for other threatened or 

endangered species that are limited by small sample sizes, 

and as we have shown, SDMs are powerful tools for 

biodiversity planning, monitoring, and management. 
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