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Abstract. Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, Sunarto, Pradan P, Budiharta S, Pitoyo A, Suhardono 

S, Setyono P, Indrawan M. 2020. Predicting potential impacts of climate change on the geographical distribution of mountainous 

selaginellas in Java, Indonesia. Biodiversitas 21: 4866-4877. Selaginella is a genus of non-flowering plant that requires water as a 

medium for fertilization, as such, it prefers mountainous areas with high level of humidity. Such unique ecosystem of Selaginella is 

available in some parts of Java Island, Indonesia, especially in highland areas with altitude of more than 1,000 meters above sea level. 

However, most mountainous areas in Java are likely to be affected by climate change due to global warming, threatening the habitat and 

sustainability of Selaginella. This study aimed to investigate the impacts of climate change on the geographical distribution of 

Selaginella opaca Warb. and Selaginella remotifolia Spring. In doing so, we predicted the suitable habitats of both species using Species 

Distribution Model (SDM) tool of MaxEnt under present climate conditions and future conditions under four climate change scenarios. 

Species occurrence data were obtained from fieldworks conducted in 2007-2014 across Java Island (283 points: 144 and 139 points for 

S. opaca and S. remotifolia, respectively) and combined with secondary data from Global Biodiversity Information Facility (GBIF) (52 

points: 35 and 17 points for S. opaca and S. remotifolia, respectively), and this dataset was used to model present geographical 

distribution using environmental and bioclimatic variables. Then, future distribution was predicted under four climate change scenarios: 

i.e. RCP (Representative Carbon Pathways) 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 in three different time periods (2030, 2050, and 2080). 

The results of the models showed that the extent of suitable habitats of S. opaca and S. remotifolia will be reduced between 1.8-11.4% 

due to changes in climatic condition, and in the areas with high level of habitat suitability, including Mount Sumbing, Mount Sindoro 

and Mount Dieng (Dieng Plateau), the reduction can reach up to 60%. This study adds another context of evidence to understand the 

potential impacts of climate change on biodiversity, especially on climate-sensitive species, such as Selaginella, in climate-risk regions 

like mountainous areas of Java Island. 
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INTRODUCTION 

Selaginella Pal. is a single genus of ferns belong to 

Selaginellaceae family that lives in moist areas and is often 

found in highlands (Wijayanto 2014). Some species of 

Selaginella have a wide distribution and tend to be 

invasive, but the others are endemics, or even endangered 

according to IUCN criteria (Setyawan et al. 2015). Studies 

on the diversity of this genus recorded a global distribution 

across several continents. Within the scope Asian 

continent, Selaginella has been found in India (e.g. Singh et 

al. 2014), Taiwan (e.g. Ebihara et al. 2012), Philippines 

(e.g. Zamora 2012), China (e.g. Banks 2008), Thailand 

(e.g. Rupa and Bhavani 2014), Japan (e.g. Ebihara et al. 

2012), and Papua New Guinea (e.g. Jorim et al. 2012). In 

Indonesia alone, from 1998 until 2014, as many 39 species 

of Selaginella had been found with 22 species were found 

in Java Island (Wijayanto 2014).  

Java Island, like other areas in equatorial zone, has two 

seasons, i.e. dry season (during May-September) and wet 

season (during October-April). Java Island has a wide 

range of precipitation which is divided into three categories 

of area. The western region of Java (Banten and West Java 

Province) and central region of Java (Central Java and 

Special Region of Yogyakarta) have the same average 

rainfall at about 2,000 mm per year, but in some 

mountainous areas in western Java the precipitation could 

reach 3,000 to 5,000 mm per year. On the other hand, the 

eastern area of Java has a lower precipitation with about 

1900 mm per year (Qian et al. 2010). Likewise, average 

temperature in Java has a broad range according to altitude 

feature. The coastal areas have an average temperature 
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ranges between 22 ºC to 32 ºC, while in higher areas with 

an altitude of between 400-1350 m a.s.l (above sea level) 

the average temperature ranges between 18 ºC-29 ºC. 

Higher altitude generally means a lower range of 

temperature, in this case, the lowest temperature in Java 

island can reach minus 4ºC which was recorded in Ranu 

Pani area in the slope of Mount Semeru (Hariyati et al. 

2013).  

The broad range of temperature and precipitation in 

Java makes suitable for Selaginella to have a wide 

horizontal and vertical geographical distribution. 

Altitudinally, Selaginella grows in lowlands, highlands and 

the ecotone (the transitional zones between the two areas), 

each with its own preference (Setyawan 2008). For 

example, the vast extent of mountainous areas in Java with 

varying climatic features supports the growth of 

Selaginella opaca Warb. and Selaginella remotifolia 

Spring., two of the most dominant and prominent species 

of mountainous Selaginella in Java. Traditionally, S. opaca 

and S. remotifolia are used as medicinal plants to treat 

wounds, menstruation disorders, and even as enhance body 

fitness (Setyawan 2009).  

Due to its potential uses as mentioned earlier, there is 

an increasing interest to study Selaginella. However, 

current trend on the research and conservation of 

Selaginella has been more focused on the studies of the 

aspect of taxonomy (e.g. Christian 2013; Weststrand and 

Korall 2016), morphology (e.g. Schulz et al. 2010, 2013; 

Singh 2014), utilization (e.g. Setyawan 2009), molecular 

biology (e.g. Korall and Kenrick 2004; Li et al. 2007) and 

ethnobotany (e.g. Setyawan and Darusman 2008; Setyawan 

2009). Meanwhile, studies on the habitat ecology and 

geographical distribution of Selaginella remain limited. 

Since most Selaginella in Indonesia naturally grows in 

humid and cool areas, which are currently threatened by 

natural degradation and global warming, there is an urgent 

need for conservation efforts to ensure the sustainable use 

of this biological resource (Setyawan 2011). The detailed 

knowledge of Selaginella’s habitat preferences and 

distribution is a prime priority for any decision making and 

action plans in the wildlife management and conservation, 

in order to guarantee long term survival of this genus.  

Since the early 20th century, scientific community has 

recognized the impacts of climate changes, induced by 

greenhouse gases (GHG), on biodiversity. Climate change 

has been proved as a perverse outcome of human activities 

(Karl and Trenberth 2003; IPCC 2007). Climate, since long 

time ago, has been identified as a primary control of the 

geographic distribution of plants (e.g. Forman 1964; Box 

1981). Therefore, the distribution of a plant should be 

expected to exhibit as its response to climate change. In 

this context, the current and potential future distribution of 

species in regard to global climate change has been widely 

investigated (e.g. Thuiller 2007; Kudela 2009). The 

methodological foundations for such theoretical concepts 

have been developed in the framework of species 

distribution modeling (SDM), also called niche modeling 

or bioclimatic envelopes modeling (Elith and Leathwick 

2009).  

Species distribution models (SDMs) are numerical tools 

that combine observation data on species occurrence or 

abundance with environmental estimates. They are used to 

gain ecological and evolutionary insights and to predict 

distributions across landscapes, sometimes requiring 

extrapolation in space and time (Elith and Leathwick 

2009). Species distribution models are useful tools for, 

among other things, informing the conservation 

management of wildlife and their habitats under a rapidly 

changing climate (Porfirio et al. 2014), modeling the 

potential impacts of climate change on extinction risk 

(Garavito 2015), and predicting spatial patterns of species 

biodiversity (Dubuis et al. 2013).  

Developing species distribution models can be 

performed using a variety of algorithms, including 

combinatorial optimization (e.g. GARP—Fitzpatrick et al. 

2007), statistical models (e.g. GAMs—Jensen et al. 2008), 

heuristic models (e.g. BIOCLIM—Beaumont and Hughes 

2002), and machine learning (e.g. ANN— Ostendorf et al. 

2001, Berry et al. 2002, Harrison et al. 2013; MaxEnt—

Phillips et al. 2006) (Sinclair et al. 2010). Maximum 

Entropy (MaxEnt) modeling has a great potential for 

identifying distributions and habitat selection of wildlife 

given its reliance on presence-only data (Baldwin 2009). 

MaxEnt is a general-purpose machine learning method 

with a simple and precise mathematical formulation, and it 

has a number of aspects that make it well-suited for species 

distribution modeling (Phillips et al. 2013). The approach 

presented by MaxEnt appears to be quite promising in 

predicting suitable habitat for threatened and endangered 

species with small sample records and can be an effective 

tool for biodiversity conservation planning, monitoring, 

and management (Kumar and Stohlgren 2009). MaxEnt has 

the ability to utilize different climatic scenarios to estimate 

the extent of occurrence of species (Beaumont et al. 2007), 

allowing the evaluation of the impact of climate changes on 

geographical distribution of species (e.g. Rondini et al. 

2006; Botkin et al. 2007; Randin et al. 2008; Engler and 

Guisan 2009; Garavito 2015). 

The purposes of this study are to model the 

geographical distribution of Selaginella opaca Warb. and 

Selaginella remotifolia Spring. under present climate 

conditions, and model its future distribution under the 

influence of climate change. By using MaxEnt software, 

we built the models based on localities data and bioclimatic 

features, in combination with climate change scenarios 

across predetermined time intervals until 2080. We assume 

that as a response to climate change, there will be a change 

in geographical distribution of S. opaca and S. remotifolia.  

MATERIALS AND METHODS 

Study area 

This study covered Java Island (Indonesia), one of the 

main habitats of the Selaginella. Java Island has been 

known as one of the 25 identified biodiversity hotspots by 

Myers et al. (2000) and it is closely located with the four 

biologically richest hotspots, such as Indo-Burma, 

Peninsular Malaysia, Wallacea, and The Philippines. 
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Tropical lowland rain forest in these regions, the richest 

ecosystems in the world, is being cleared for commercial 

uses, settlement expansion, and logging. Such problems are 

massively occurring in Java Island, thus responsible for the 

increasing level of greenhouse gasses which is expected to 

negatively affect the condition of Selaginella’s habitat.  

Java Island has approximately 133,930 km2 of land area 

and altitudinal ranges from 0-3,676 m a.s.l. All of the 

locality points were collected in the mountainous area of 

Java. Records points were selected carefully to represent 

the geographical distribution of both S. opaca and S. 

remotifolia in Java Island (Figure 1). 

Procedures 

Locality data 

Geo-referenced occurrence records of Selaginella 

opaca Warb. and Selaginella remotifolia Spring. across 

Java Island were obtained from field survey data collected 

between 2007 and 2014 with a high confidence level of 

taxonomic identification. A total of 283 species occurrence 

points (consisted of 144 points of S. opaca and 139 points 

of S. remotifolia) were collected in highland areas of Java 

Island using a GPS (Garmin eTrex Series). The accuracy of 

the GPS is normally between 0.01 km to 0.05 km. 

According to a study conducted by Montgomery et al. 

(2011) this level of telemetry error, which is much smaller 

than the resolution of predictors, is expected to have a little 

effect on the accuracy of predicted models. Thus, an error-

correction for these data was not performed. In addition, 

several geo-referenced occurrence records of both species 

(35 points of S. opaca and 17 points of S. remotifolia) were 

acquired from the Global Biodiversity Information Facility 

(GBIF) website (http://www.gbif.org). So, 335 points used 

in this study, include 151 points of S. opaca and 156 points 

of S. remotifolia. 

Sampling bias has been argued to have a strong 

influence on SDM prediction ability (Fourcade et al. 2013; 

Fourcade et al. 2014). Therefore, we initially accounted for 

spatial sampling bias by performing a spatial filtering 

(Leitao et al. 2011; Syfert et al. 2013; Boria et al. 2014; 

Yoan et al. 2014). Automatically, MaxEnt will perform 

spatial filtering by removing duplicate points that fall into a 

single environmental cell (Merrow et al. 2013). To enhance 

the spatial filtering, we reduced the locality points by only 

one point per 2 km radius within each point. The 2 km 

radius was chosen based on the modification of a 10-km-

radius used by Pearson et al. (2007); Anderson and Raza 

(2010) in their study which was conducted in mountainous 

areas with high spatial heterogeneity. Considering the level 

of spatial heterogeneity of climate variability over Java 

Island (Qian et al. 2010), we decided to reduce the radius 

used in those studies from 10 km to 3 km. Moreover, this 

distance was chosen to reduce the geographic biases 

associated with collection data, rather than to approximate 

the species’ dispersal capabilities. Geographic Distance 

Matrix Generator ver 1.2.3 was used to calculate the 

geographic distance between each pair of occurrence 

records (Erst 2012).  

 

 

 

 
 

Figure 1. Localities data of Selaginella opaca and S. remotifolia across Java Island, Indonesia  

 

 

Selaginella opaca [144] 
Selaginella remotifolia [139] 
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Predictor variables 

Modeling the S. opaca and S. remotifolia habitat 

suitability and potential distribution across Java Island 

under current and future climate conditions were conducted 

using a set of environmental and bioclimatological 

variables. In total, we used 22 datasets, consisted of 

geological features of Java Island, soil type, elevation data, 

and 19 bioclimatic data layers (11 temperature and 8 

precipitation variables). Bioclimatic data were extracted 

from WorldClim Bioclimatic datasets 

(http://www.worldclim.org). This website provides 19 

bioclimatic variables that are interpolated and modeled 

from observations and averaged over the period 1970 until 

2000 at 1 km2 spatial resolution. Elevation data were also 

extracted from the WorldClim database with the same 

spatial resolution. Geological features and soil types of 

Java Island were collected from freely available Indonesian 

Geospatial Information Agency's (Indonesian: Badan 

Informasi Geospatial, abbreviation: BIG) website. Those 

data were not ready to use yet, and then, were processed in 

advance by using geographic information systems method. 

The process was image cutting, resampling of data in a 

geographic coordinate system of WGS48 at a resolution of 

1 km2 (0.008333 decimal degree), and file format 

converting into ASCII format. All of these processes were 

performed using QuantumGIS software ver 2.8.10. Since 

future prediction of land use/land cover changes, human 

disturbances, and changes in biotic interaction is limited, 

we did not take these factors into account. 

To predict the effect of climate change on the potential 

distribution of the two mountainous Selaginella species 

under several climate change trajectories, future climate 

datasets freely provided by CGIAR Research Program on 

Climate Change, Agriculture, and Food Security 

(www.ccafs-climate.org) were used. The future climate 

datasets were downscaled to a 1-km2 spatial resolution 

from its original resolution at scale 100 to 200 km2 using 

the delta method. The delta method interpolates the 

General Circulation model generally used in climate 

modeling using a thin plate spline spatial interpolation 

method to achieve the 30 arc seconds resolution (1 km2) 

(Ramirez and Jarvis 2008). We selected four RCP 

(Representative Carbon Pathways), which represents the 

future greenhouse gas (GHG) trajectories, namely RCP 2.6, 

RCP 4.5, RCP 6.0, and RCP 8.5 in three different time 

periods (2030, 2050, and 2080). In this study, we selected 

the HadGEM2-CC (Hadley Global Environment Model-2 

Carbon Cycle) Global Circulation Model, which was 

developed by the Hadley Center, United Kingdom (Collins 

et al. 2011). HadGEM2-CC model has been used to 

perform all the CMIP5 (Coupled Model Inter-comparison 

Project Phase 5) centennial experiments including 

ensembles of simulations of the RCPs (Shrestha et al. 

2014). RCP 2.6 assumes that global GHG will increase 

slowly to reach its peak at 3.1 W/m2 between 2010-2020, 

with emissions declining substantially thereafter at 2.6 

W/m2 by the year 2100 (Van Vuuren et al. 2007; Moss et 

al. 2009). Emissions in RCP 4.5 is assumed to be stabilized 

at 4.5 W/m2 by the year 2100 due to the employment of a 

range of technology and strategies to reduce GHG 

emissions (Clarke et al. 2007). Likewise, the emissions in 

RCP 6.0 is projected to reach its peak around 2080 and 

stabilizes by the year 2100 at 6.0 W/m2. In RCP 8.5 

emissions continue to rise throughout the 21st century, 

reaching around 8.5 W/m2 as the highest value (Riahi et al. 

2011).  

The Global Climate Models have been widely used to 

assess the climate change impact at local to global scales 

and used as basic information to construct climate change 

scenarios. However, these models exhibit systematic error 

(biases) due to the limited spatial resolution, numerical 

schemes, simplified physics, and thermodynamic 

processes, or incomplete knowledge of climate system 

processes (Ramirez-Villegas et al. 2013). Thus, we 

performed a bias-correction procedure to produce climate 

projections that fit better for modeling. The Change Factor 

(CF) and Quantile Mapping (QM) methods were selected 

in this bias-correction procedure. In the Change Factor 

(CF) approach, the raw GCM outputs current values are 

subtracted from the future simulated values, resulting in 

“climate anomalies” which are then added to the present-

day observational dataset (Tabor and Williams 2010). The 

Quantile Mapping (QM) method was selected to 

complement the CF method, since the CF method works 

well for only more non-stochastic variables (i.e. 

temperature). Thus, a more sophisticated approach for bias-

correcting stochastic variables (e.g. precipitation and solar 

radiation) was needed.  

Modeling  

Predictive maps of occurrence under current and future 

climate conditions were modeled by using MaxEnt 

software ver. 3.3.3a (Computer Science Department-

Princeton University 2004) on the basis of occurrence data 

and environmental variables (Philips and Dudik 2008; 

Summers et al. 2012). MaxEnt software was selected since 

it has been proved suitable to be used with presence-only 

(PO) data, and provides robust and reliable results (Warren 

and Seifert 2011). Since 2005, more than 1000 published 

distribution modeling has been conducted using MaxEnt 

software (Merow et al. 2013; Fourcade et al. 2014). The 

popular utilization of MaxEnt is due to higher predictive 

accuracy than any other method (Elith et al. 2006; 

Summers et al. 2012). MaxEnt also performs well to 

estimate the effect of climate change on the potential 

shifting range of species (Kou et al. 2011; Johnston et al. 

2012; Duan et al. 2016).  

To minimize the impact of multi-collinearity and over-

fitting, we calculated pairwise correlation of the predictor 

variables using R program ver. 3.4.1 and then removed 

highly correlated variables (r2≤0.80) (Baldwin 2009; 

Merow et al. 2013). Out of nineteen variables, nine 

bioclimatic variables (bio_1, bio_2, bio_3, bio_4, bio_12, 

bio_13, bio_15, bio_18, and bio_19) and three 

environmental variables (altitude, geological feature, and 

soil type) were then used to model the potential distribution 

of both species under current and future climate condition. 

Despite the fact that MaxEnt has been shown to give robust 
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and reliable results by just using default settings (Phillips et 

al. 2008), we modify several parameter values to adjust the 

calculation with our present data and predictor variables. 

The adjusted parameter values were: five replicated runs 

(the averaged value is the one used as the result) with 

"cross validate" as the replicated run type, maximum 

iterations = 5,000, and convergence threshold = 10,000. 

We also created background points data to be included as a 

bias file to represent sampling effort to reduce sampling 

bias (Fourcade et al. 2014). Bias file, ideally, represents the 

actual sampling effort across the study area or could be 

estimated by the aggregation of occurrences from closely 

related species (Phillips et al. 2009). Nevertheless, in most 

real modeling situations, this information is limited. In 

consequence, following Elith et al. (2010), authors 

produced a Gaussian kernel density map of the occurrence 

locations, rescaled from 1 to 20 to be derived as bias file.  

Data analysis 

The main output of MaxEnt program is continuous data 

showing the potential suitable habitat distribution which 

linearly scaled between 0 (lowest) to 1 (highest) probability 

(Philips and Dudik 2008). Furthermore, MaxEnt created 

calculation of the bioclimatic relative contribution to the 

model and how these variables affect the MaxEnt 

prediction. Alternate estimation of variable importance was 

also collected by running the jackknife test. The results of 

jackknife test show which variable has the most useful 

information by itself and which variable appears to have 

the most information that is not present in the other variables.  

MaxEnt will calculate an area under the receiver 

operating characteristic (ROC) curve (AUC) to evaluate 

model performance. AUC values can range between 0.5 

and 1.0, with 0.5 indicating that the model is no better than 

random prediction; values below 0.7 are low, values 

between 0.7 and 0.8 are good, and values >0.9 indicate 

high discrimination or it means that the model is far better 

than random prediction. Even though the AUC was written 

as the established method for assessing the fitness of the 

model in some papers (e.g. Townsend Peterson et al. 2007; 

Rodder et al. 2010; Donald et al. 2012; and Setiadi 2012), 

unfortunately, it is also proved wrong by Lobo J.M et al. 

(2008); Bahn and McGill (2012); and Aguirre-Gutiérrez et 

al. (2013). These studies also demonstrated that AUC does 

not provide useful information for assessing SDM 

performance. Therefore, in this study, the additional 

evaluation of the model was conducted using True Skill 

Statistic (TSS) as it has been proved theoretically and 

empirically better than AUC and also better than Kappa 

Statistic in measuring the performance of species 

distribution models (Allouche et al. 2006). 

We imported the ASCII file containing the probability 

of habitat suitability into QuantumGIS software ver. 

2.18.10 and reclassified it into three classes: low suitability 

(25-50 % probability of occurrence), medium suitability, 

(50-75% probability of occurrence), and high suitability 

(>75 % probability of occurrence). The reclassification 

allowed us to compare the change in every class over time 

and space. Another analysis was conducted to observe the 

potential change of altitudinal distribution of S. opaca and 

S. remotifolia by compared the mean values of the 

predicted areas under current and future climate scenarios 

condition using independent sample T-test. We then 

compared the total area of predicted habitat under current 

and projected future climate conditions by counting the 

number of “presence” grid cells and multiplied it by their 

spatial resolution.       

RESULTS AND DISCUSSION 

Identifying important environmental variables 

Twelve predictor variables (environmental and 

bioclimatic) were utilized to build the ecological niche 

model of S. opaca and S. remotifolia. It is important to note 

that when a single run of MaxEnt software involves two 

different species in the same genus, MaxEnt, in its settings 

option, is able to calculate and give separate results for 

each species. Therefore, the important variables that 

contribute to build the model for each species can be 

compiled and explained separately. The four most 

important variables that contributed a combined total of 

83.8% to the model were altitude, annual mean temperature 

(bio_1), geology feature, and mean diurnal range (bio_2), 

accounting for 58.8%, 15.3%, 9%, and 6%, respectively 

(Table 1). These four variables are representative of all four 

major aspects of environmental variables (temperature, 

land factor, altitude, and precipitation) included in the 

model.  

MaxEnt produces response curves to illustrate how each 

variable affects the prediction. The curves show how the 

logistic prediction changes as each variable are varied, 

keeping all other variables at their average sample value 

(Phillips et al. 2006). Altitude, by far, was the most 

important determinant in the model, with the response 

curve indicating positive correlation between the increase 

in altitude level and increase in probability of occurrence 

which started its significant value at around 1,000 m a.s.l 

and reached its peak at about 2,100 m a.s.l before 

decreased gradually at higher altitude to a level below 0.5 

(Figure 2.A). The second most important predictor was 

annual mean temperature, suggested high probability of 

occurrence in a narrow range of temperatures between 13 

and 18ºC, then the probability dropped lower and even 

reach zero at temperature higher than 24ºC (Figure 2.B). 

The next important variable was geology feature, 

represented with a code number for each category of 

geological feature. According to Figure 2.C, the highest 

probability of presence was on Qlv (code number 295) type 

of rocks which has been approximately existed since the 

Holocene epoch (1.26 ma) (Hudson 2013). The next 

notable geological feature was Qtp (code number 281) type 

of rocks, which has approximately been dated back to the 

Pleistocene epoch (2.6 ma) (Bhat et al. 2012). These types 

of rock are classified as volcanic rock which is often found 

in Java since this island contains numerous volcanoes. 

Therefore, since these types of geological feature are 

abundance in highland region in Java, both mountainous 

Selaginella is often found in these types of rock. The fourth 

important variable was precipitation of wettest month 
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(bio_13), which represents the mean precipitation during 

wet season. Figure 2.D illustrates a high probability at 

precipitation above 600 mm, and increasing along with 

higher precipitation rate.  

Model of geographical distribution under current 

climate condition 

The model of potential distribution of mountainous 

Selaginella under current climate condition is shown in 

Figure 3. The figure illustrates their wide distribution, with 

numerous patches of varying sizes and levels of suitability 

across mountainous areas in Java Island. According to our 

model, only about 5.07% (6,436 km2) of the areas in Java 

Island is suitable for S. opaca and S. remotifolia habitat. 

The number consists of 4,266 km2 (3.35%), 1,751 km2 

(1.37%), and 417 km2 (0.32%) of low, medium, and high 

probability area respectively. The greatest concentration of 

suitable habitat is observed covering three mountains in 

Central Java Province, Indonesia, i.e. Mt. Sumbi, Mt. 

Sundoro, and Mt. Dieng. This area is expected to have the 

best climatic and environmental conditions to support the 

habitat of mountainous Selaginella. Another noticeable 

area with a wide medium probability is in Mt. Merapi. 

Mount Merapi is a volcanic mountain located in Central 

Java province and has several steep slopes with dense 

vegetation on its lower flanks.  

There is a clear division of predicted distribution 

between the central region and both the western and eastern 

regions of Java, even though these sites have been recorded 

carefully with respectable number of locality points. Low 

probability area in western Java is dominant and distributed 

widely in small patches. Likewise, low probability area is 

also dominant in eastern part of Java but with larger patch. 

The pattern could be due to the difference of unique 

climatic features between these regions. Another 

explanation may relate to model sensitivity or data 

inaccuracies, for example, the scale of bioclimatic data 

which is larger than many small suitable bioclimatic spaces.  

 
Table 1. Percentages of variables contribute to the final model in 

MaxEnt 

 

Environmental variables 
Contribution 

(%) 

Altitude (Alt) 53.1 

Annual Mean Temperature (ºC *10) (bio_1) 21.2 

Geology feature 10 

Precipitation of Wettest Month (bio_13) 5.6 

Mean Diurnal Range (Mean of monthly (max 

temp - min temp)) (bio_2) 
3.6 

Temperature Seasonality (standard deviation 

*100) (bio_4) 
1.4 

Soil type 1.1 

Isothermality (bio_3) 1.1 

Annual Precipitation (bio_12) 1 

Precipitation of Coldest Quarter (bio_19) 0.7 

Precipitation of Warmest Quarter (bio_18) 0.6 

Precipitation Seasonality (bio_15) 0.6 

 

 

  
A B 

  
C D 

Figure 2. Response curves from MaxEnt to the most important variables for the species distribution model of S. opaca and S. 

remotifolia: A. Altitude; B. Annual mean temperature (in ºC*10); C. Geology feature; D. Precipitation of Wettest Month (in mm/month) 
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Figure 3. Predicted potential distribution of Selaginella opaca and S. remotifolia under current bioclimatic condition. 

 
 

 

Prediction of future geographical distribution 

Prediction of the potential impact of climate change on 

the distribution of S. opaca and S. remotifolia is shown in 

Figure 4. The future modeled scenarios shows a significant 

decrease in predicted climatically suitable habitat for both 

species across all scenarios in the given periods of time 

(Figure 5). The area which has been predicted as mostly 

affected by climate change is the western part of Java. 

Model predicted that the suitable habitat in this area will 

decrease by 15-38 % in all climate scenarios. In the RCP 

2.6 scenario (lower emission by the end of century, but 

with significant increase in the first quarter of century) the 

highest suitability area will likely decrease by almost 40% 

in 2080, while the medium and low suitability area in this 

scenario will fall marginally. 

Likewise, in RCP 4.5 and RCP 6.0 (GHG emission will 

increase dramatically but managed to be stabilized by the 

end of century), the downward trend of the high suitability 

area is predicted to be greater than the trend in RCP 2.6. Of 

the 417 km2 of high suitability area in the current condition, 

more than half (287 km2) will be lost by the end of 2080 

under RCP 4.5 climate scenario, and about 295 km2 of that 

area will be lost under RCP 6.0 climate scenario by the 

same period of time. RCP 8.5 is predicted to have the most 

impact on the distribution of suitable habitat of S. opaca 

and S. remotifolia. Under this climate projection, both low 

and medium suitability areas will be gradually decreased 

while becoming centralized as the higher level of suitability 

areas are concentrated in the central part of Java. 

Furthermore, in this scenario, Java Island will only have 98 

km2 left of high suitability area for both mountainous 

Selaginella in 2080.  

The projected climate change also observed to affect 

the altitudinal distribution of mountainous Selaginella 

(Figure 6, Table 2). The average elevation of the 

distribution of mountainous Selaginella under three climate 

change pathways: RCP 6.0 (2050), RCP 2.6 (2080), and CP 

6.0 (2080) are marginally lower than the average elevation 

under current climate condition. In contrast, higher average 

elevation of the distribution is shown under RCP 2.6 (2030) 

climate pathway. Based on the independent t-test between 

the altitude means of potential distribution range under 

current climate conditions and that of future climate 

conditions, all of these changes are statistically significant 

(p = 0.01). On the other hand, other climate change 

scenarios show a decrease in average elevation of the 

distribution. However, none of these changes were 

statistically significant.  
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Figure 4. Estimated areas of the predicted distribution of Selaginella opaca and S. remotifolia habitat under future bioclimatic conditions 

 

 

 
 

Figure 5. Prediction of future geographical distribution of Selaginella opaca and S. remotifolia under four climate change scenarios. 

 

 

Table 2. Independent T-test between average elevation of current 

and future distributed predictions 

 

Climate scenarios Year Mean SD P-value 

Current condition - 1668.66 585.21 - 

RCP 2.6 2030 1745.5 544.06 1.82E-07 

RCP 4.5 2030 1666.06 585.45 0.85 

RCP 6.0 2030 1652.22 587.75 0.24 

RCP 8.5  2030 1651.17 586.21 0.21 

RCP 2.6 2050 1643.26 585.21 0.06 

RCP 4.5 2050 1667.09 575.59 0.9 

RCP 6.0 2050 1624.48 570.53 0.001 

RCP 8.5  2050 1644.24 584.13 0.07 

RCP 2.6 2080 1602.35 574.06 0.0001 

RCP 4.5 2080 1639.12 578.25 0.03 

RCP 6.0 2080 1626.28 556.87 0.001 

RCP 8.5  2080 1658.06 586.7 0.44 

Discussion 

Java as the most densely populated island in Indonesia, 

home to about 57% of Indonesia’s population, will likely 

suffer more from the worsening human-induced climate 

change. The fact that this island has a high level of 

biodiversity (Myers et al. 2000), urges many efforts to 

study the response of biodiversity to the impacts of climate 

change. Projection of climate change in Java Island by 

Measey (2010) predicted a rise in the mean temperature by 

0.40 to 0.41 ºC in 2020, and has been predicted to increase 

by 2.0 to 2.5 ºC at the end of 21st century by Gosling et al. 

(2011). This study illustrates the first attempt to model the 

distribution of mountainous Selaginella under current and 

future climate conditions. Since the change in climate 

condition has already impacted Selaginella’s habitat in the 

past time in several places (e.g. Boettger 2009; Cao et al. 
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2010; Bezrukova et al. 2012), it will likely affect the 

distribution of this genera under future climate condition in 

Java Island as well. Therefore, this study provides a model 

that could predict the impact of climate change on 

mountainous Selaginella’s distribution driven by several 

representative greenhouse gas concentration pathways.  
 

 

 

 
 

Figure 6. Change in average altitudinal distribution of Selaginella opaca and S. remotifolia under four future climate scenarios 
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Our study represents a robust result of a modeling 

attempt driven by carefully selected locality data and 

bioclimatic variables. Despite the fundamental problem 

when using AUC (Area Under the Curve) to validate 

species distribution modeling, we retrieved the AUC value 

of 0.957, indicating that the prediction in this study was far 

better than random prediction and that the selected 

variables have described the distribution of mountainous 

Selaginella acceptably. Furthermore, additional evaluation 

of the model was conducted using True Skill Statistic 

(TSS) to give further confidence in the output of this 

model. The TSS value of 0.81 gives the impression that the 

model built in this study has a very good degree of 

agreement (Li and Guo 2013). Regarding the AUC, its 

value is highly correlated to prevalence of the locality 

points and the size of the study area (Lobo et al. 2008). 

Consequently, this would generate some sort of bias or 

misunderstanding, for example, if one uses a small study 

region or if the locality points are localized in small area 

and the prevalence is small, one would get a high AUC 

value. Moreover, AUC, just like Kappa, is reliable only if 

we use PA (Presence-Absence) model due to the fact that 

both AUC and Kappa are weighting omission and 

commission errors equally. Thus, in case of this study 

where presence-only data was used, AUC and Kappa are 

not necessarily reliable.According to Setyawan et al. 2015, 

Selaginella is a herbaceous plant that will likely grow in 

the moist or rather wet region. Thus, since Java Island is a 

tropical island, elevation, which has a strong relationship 

with the level of humidity, plays another important role in 

the growth and the distribution of mountainous Selaginella. 

Then, temperature, as a regulator of evapotranspiration 

level, will become highly important factor as well in order 

to maintain the level of humidity in the region. Our study 

that illustrates the importance of altitude, temperature, and 

precipitation (see results) is in line with the knowledge 

about the habitat needs of mountainous Selaginella. 

Geological feature, on the other hand, may not represents 

the preference growth region of mountainous Selaginella, 

but rather to represents the geological feature in the 

highland region of Java. In this regard, the result of our 

study shows only the geological feature that predominantly 

will be found in the volcanoes region. The fact that Java 

island is part of circum-Pacific belt region (USGS 2012) 

adds confidence to the former allegation that this result 

represents only the dominant feature in the mountainous 

region of Java, rather than the actual preferred geological 

feature of the growth and distribution of S. opaca and S. 

remotifolia.  

Despite the limitation to inspect the current distribution 

predicted by this study across Java Island, there are several 

conformities with the distribution of S. opaca and S. 

remotifolia found by Setyawan et al. (2015) and Setyawan 

(2016) in Mt. Merapi and in the Dieng plateau, 

respectively. These areas, by our model, represent a wide 

area of medium to high level of habitat suitability. 

However, the model might be slightly underestimating the 

potential distribution in the western region of Java since 

several mountainous areas in this region have the same 

altitudinal and geological feature with the one in the central 

and eastern regions. Although the TSS value suggests a 

very good degree of agreement of this model, further 

exploration is needed to confirm whether there are several 

factors that distinguish the western region from the rest of 

region or whether mainly because of the limitation of the 

model. 

Based on our model, the negative impacts of future 

climate condition is illustrated by major decrease in the 

level of habitat suitability and the total area of habitat 

distribution. The total area of habitat is expected to 

decrease by 1.8 % to 11.4 % under all climate change 

trajectories. The most favorable climate scenario is RCP 

2.6 (in all periods of time) which predicts no more than 5% 

of suitable habitat losses. Lower altitude regions under 900 

m a.s.l across the island are predicted by this scenario to 

lost its capability to support the sustainability of 

mountainous Selaginella. Likewise, the worst scenario in 

this study (RCP 8.5) is predicted not only the lost 

capability of lower altitude but also lowering the level of 

habitat suitability in the higher region. The highest level of 

habitat suitability which concentrated in the region between 

Mt. Sumbing, Mt. Sundoro, and Mt. Dieng is likely to 

decrease by almost 60% (Figure 4).  

Mean temperature in Indonesia under future climate 

conditions is projected to increase by 0.72 to 3.92 ºC (Crus 

et al. 2007) depending on different scenarios. Theoretically, 

since climate in Indonesia is strongly influenced by El 

Nino Southern Oscillation (ENSO) events, rising in 

temperature may lead to an excessive drought which in the 

end will drop the humidity level. Consequently, the 

increasing level of evaporation in some areas of Indonesia 

(induced by high-level temperature) would intensify the 

earth’s water cycle, resulting in higher risk of storm and 

flooding in another Indonesian area during La Nina events. 

However, annual precipitation in Indonesia is projected to 

have an opposite path of change. Boer and Faqih (2004) 

stated that there is significant spatial variability in annual 

precipitation across all of Indonesia over the last century. 

They stated that there has been a significant decline in 

annual rainfall of southern regions of Indonesia (e.g. Java 

Island, Lampung, South Sumatera, South Sulawesi, and 

Nusa Tenggara) and an increase of precipitation level in the 

northern regions of Indonesia (e.g., most of Kalimantan, 

North Sulawesi, etc). Furthermore, Cruz et al. (2007) gave 

an estimation number of two percent of the declining 

precipitation and up to four percent of the increasing level 

of precipitation by the end of the century.  

Since Java Island has been predicted to have a higher 

level of temperature and lower level of annual 

precipitation, the average elevation of the suitable habitat 

for mountainous Selaginella may change. Despite the 

statistically insignificant value (with the exception in RCP 

2.6 in 2030), the average altitude of suitable habitat will 

mostly be shifted to a higher elevation. Hypothetically, the 

shift may be triggered by the ability of the higher altitude 

area to maintain the high humidity level in spite of the 

anomaly of temperature and precipitation level in Java 

Island. In contrast, our model also predicted a lower 

average of altitudinal distribution under several climate 

trajectories. It is unclear to explain what factors may induce 
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a decrease in altitudinal range under these climate 

trajectories. The most possible approach is to monitor the 

impact of past climate change on the distribution of 

mountainous Selaginella. Nevertheless, this approach is 

impossible to be conducted due to unavailability of 

historical data on the distribution of mountainous 

Selaginella. 

The model built in this study, certainly, has some 

limitations. Single-species approach via bioclimatic 

modeling and the absence of more detailed ecological and 

physiological data are some of the major limitations in the 

assessment of climate change impact (Hampe 2004; Morin 

and Thriller 2009; Sinclair et al. 2010; Ellis 2011). Other 

limitations are related to the spatial resolution of 

bioclimatic variables. The 30 arcs second resolution used in 

this study may greater than the range size distribution of 

mountainous Selaginella. However, since new climate 

models are currently developed while the existing are 

refined, future research may have the opportunity to re-

analyze this existing data under finer temporal and spatial 

resolution. Further precise modeling of the distribution 

trends of mountainous Selaginella in the future, shall 

incorporate future model of land use/land cover change and 

biotic interactions between species in the regional 

ecosystems. Moreover, sophisticated models to be 

developed in the future shall include microclimatic 

variables and landscape heterogeneity of Java Island. 
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