
BIODIVERSITAS  ISSN: 1412-033X 
Volume 22, Number 4, April 2021 E-ISSN: 2085-4722  
Pages: 2088-2103 DOI: 10.13057/biodiv/d220458 

Projecting expansion range of Selaginella zollingeriana in the 

Indonesian archipelago under future climate condition 

AHMAD DWI SETYAWAN1,2,♥, JATNA SUPRIATNA3, NISYAWATI3, ILYAS NURSAMSI4, SUTARNO2, 

SUGIYARTO2, SUNARTO1,2, PRAKASH PRADAN5, SUGENG BUDIHARTA6, ARI PITOYO2,  

SAPTA SUHARDONO1, PRABANG SETYONO1, MUHAMMAD INDRAWAN1  
1Department of Environmental Science, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret. Jl. Jend. Urip Sumoharjo No. 179, 

Surakarta 57128, Central Java, Indonesia. Tel.: +62-271-663375, ♥email: volatileoils@gmail.com 
2Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret. Jl. Ir. Sutami 36A, Surakarta 57126, Central Java, 

Indonesia 
3Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia. Jl. Lingkar Akademik, Depok 16424, West Java, Indonesia 

4School of Earth and Environmental Science, Faculty of Science, The University of Queensland. St Lucia 4072, Brisbane, Queensland, Australia 
5West Bengal Biodiversity Board, Department of Environment, Government of West Bengal, Salt Lake, Sector-III, FD415A, Poura Bhawan, 4th Floor, 

Kolkata, West Bengal, India 
6Purwodadi Botanic Gardens, Indonesian Institute of Sciences. Jl. Raya Surabaya-Malang Km. 65, Purwodadi, Pasuruan 67163, East Java, Indonesia 

Manuscript received: 5 January 2020. Revision accepted: 29 March 2021.  

Abstract. Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, Sunarto, Pradan P, Budiharta S, Pitoyo A, Suhardono S, 
Setyono P, Indrawan M. 2021. Projecting expansion range of Selaginella zollingeriana in the Indonesian archipelago under future 
climate conditions. Biodiversitas 22: 2088-2103. The expansion of plant species to outside areas of its original localities has attracted 
great interest in theoretical ecology. The scientific curiosity of such phenomenon is even deeper when the geographical expansion is 
confined by natural boundaries and affected by environmental changes, including climates. This study aimed to predict the current 
suitable habitat niche of Selaginella zollingeriana Spring, a species with original distribution in Java Island, and to project its potential 

suitable niche in the Indonesian archipelago accounting for future climate conditions. In doing so, we applied the Ecological Niche 
Modelings (ENMs) using MaxEnt algorithm by employing 30 presence data of S. zollingeriana and twelve enviro-climatic variables. 
The model predicted around 17.22% (22,095 km2) of the Java Island area is potentially suitable for current habitat niche of S. 
zollingeriana, consisting of 10.93% (14,028 km2), 4.75% (6,097 km2), and 1.54% (1,970 km2) of low, medium, and high suitability 
areas, respectively. Under future scenarios, the model predicted the possibility of species expansion into the other four big islands (i.e., 
Sumatera, Borneo, Sulawesi, and Papua). Nonetheless, the model also predicted a declining trend of the availability of suitable niches 
wherein from 2030 to 2080 the modeled niche declined about 58% and 59% under the most optimistic and most pessimistic climate 
change projections, respectively. While this study provides a primary example in predicting species expansion in tropical archipelago, 

similar studies in a range of contexts (e.g., species, region) are recommended to add more evidence to strengthen the theoretical ground 
of expansion ecology under climate changes. 
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INTRODUCTION 

Plant species expansion is an ecological phenomenon 

that represents the proliferation, spread, and persistence of 

species transported by various means (e.g., human 
activities, animals, wind) to new and potentially distant 

ranges. Classic diffusion theory of species expansion 

typically considers scenarios of symmetrical, radial 

expansion from a central point, the speed of which is 

determined by the dispersal ability and reproductive rate of 

the population (Skellam 1951). The radial expansion of 

species theoretically occurs either at a constant rate that 

increases linearly along time, or at an accelerating rate 

wherein the distances gained increase each year (Shigesada 

et al. 1995). Theoretical and empirical approaches to 

analyzing range expansion have highlighted the importance 

of intra-species interactions, evolution, long-range 
dispersal events, temporal variability, and spatial 

heterogeneity as factors that significantly influence the 

expansion process (reviewed in Hastings et al. 2005). 

Furthermore, landscape structure and configuration are also 

particularly crucial since few expanded landscapes are 

homogenous and geographical boundaries can restrict the 
extent of the expanded range (With 2002; LaMorgia et al. 

2011). While model study typically focuses on range 

expansion from a single point of introduction, multiple 

introduction points are more coherent since it can enhance 

the likelihood of establishment and can ensure expansion 

range increase in heterogeneous landscape bounded by 

coastline, such as Indonesia (e.g. Kolbe et al. 2004; Miller 

et al. 2005; Urban et al. 2008; Zalewski et al. 2010; Sakai 

et al. 2001). 

The 21st century experienced the most robust global 

warming of the last millennium, and future temperature 

rises are likely to exceed this trend with a predicted 
increase of between 1.7°C and 4°C until the end of the 

century (Solomon et al. 2007). The potential impact of 

these rapid changes of climate on the conservation and 
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distribution of biodiversity is something that must become 

an object of great concern. One of the major effects is that 

animal and plant species worldwide might move to higher 

latitudes and elevations in response to deviate off the 

enviro-climatic conditions to which they are adapting 

(Parmesan 2006). Several model-based projections 

suggested that the expected future climate conditions 

would allow many species to expand their current 

distribution range several hundred kilometers towards 

higher latitudes and/or elevations within a few decades 
(Skov and Svenning 2004; Struebig et al. 2015). Much 

ambiguity exists, however, to which extent species will be 

capable of achieving such large-scale expansions in pace 

with rapid changes of climate. The answer to this question 

might include wide-ranging ecological and evolutionary 

consequences spanning from the population to the biome 

level. Therefore, the expansion process might strongly 

affect the wider-range genetic structure of species and the 

potential adaptability of their populations (Excoffier et al. 

2009). The discrepancies in migration capacity of species 

should result in considerable reshufflings of local and 
regional communities of species (Ackerly 2003; Jackson et 

al. 2009), and the expansion of biomes with its components 

will directly influence future climate, be it as a mitigating 

(e.g., by cloistering CO2) or an exacerbating force (Bonan 

2008).  

There are two processes that are necessarily involved in 

plant range expansion: i) the dispersal of propagules 

beyond the current range limit, and ii) the establishment 

and growth of pioneer populations (Nathan et al. 2003). 

Both processes contain a strong hypothetical component 

which usually undetected by direct observation and hence 
is extremely difficult to measure in nature (Nathan et al. 

2003; Nathan 2006; Simberloff 2009). Nevertheless, 

methods for differentiating the current and potential 

expanded distribution of species had received little 

consideration. Since the current distribution of many plant 

species that has the potential to expand their ranges may be 

much smaller than their maximum distributions (e.g., 

studies by Ward et al. 2009), robust methods are required 

for discriminating suitable habitat that is occupied and 

habitat that could potentially be occupied. The first 

necessary step is to distinguish "suitable" from "unsuitable" 

habitat in its current range limit, and recently two general 
approaches have been used for this purpose. Presence-only 

data and enviro-climatic variables can be used to fit 

predictive "niche-based models" of distribution by various 

methods (Elith et al. 2006). Nevertheless, presence-only 

modeling requires careful attention on how the data 

collected so that major spatial and detection biases may be 

reduced or even eliminated (Gu and Swihart 2004; Wintle 

et al. 2005; Araujo and Guisan 2006). The second step is to 

project the potentially "suitable" habitat outside of current 

range limit in its vicinity regardless of how the process of 

its dispersal.  
Recently, Ecological Niche Modelings (ENMs) with its 

set of enviro-climatic variables are being used for the 

purposes, for instance, in the prediction of expansion 

biology, particularly to predict invasion risks (in the case of 

invasive species) and optimize control strategies (e.g., 

Bradley et al. 2010; Jimenez-valvarde 2011; Giljohann et 

al. 2011; Tulloch et al. 2014; Lecocq et al. 2016; Kramer et 

al. 2017). However, there are two key assumptions of 

ENMs that are often violated in expansion biology. Firstly, 

niche conservatism in ENMs is an assumption required for 

model transferability, whereby climate niches of the 

species being modeled from the native area are to be 

projected onto new geographical spaces to estimate the 

likelihood of successful expansions there (Barbet-Massin et 

al. 2018). In the context of expansion biology, niche 
conservatism differs remarkably from evolutionary niche 

conservatism (fundamental niche conserved over 

evolutionary time), since the question is to understand 

whether the species' realized niche is preserved over space, 

Nonetheless, the assumption of niche conservatism over 

space is not always conjoint, since the naturalized climatic 

niches of expansive species can differ from their native 

climatic niches (Medley et al. 2010; Early and Sax 2014; 

Parravicini et al. 2015). Secondly, up till the latest stage of 

expansion, the species is not yet at equilibrium with its 

environment (Gallien et al. 2012); therefore its climatic 
niche is likely underestimated. Despite the criticisms, the 

pivotal need for predictive models is such that ENMs are 

still often used in species range expansion studies. 

Using the theoretical frameworks explained above, here 

we demonstrate the application of Ecological Niche 

Modelings (ENMs) to predict the distribution of current 

"suitable" niche for Selaginella zollingeriana Spring in 

Java Island and its potential "suitable" niche across the 

Indonesian archipelago based on enviro-climatic variables. 

Since the potential expansion would occur for decades, we 

incorporate the potential changes in future climate 
conditions through the implementation of projected future 

climate conditions using various scenarios. Therefore, we 

could gather information on the distribution of 

areas/regions where the species could potentially be 

dispersed and survived outside of recent-known 

distribution. 

The choice of S. zollingeriana provides an excellent 

context of the study on modeling species expansion under 

future climate projection. According to Setyawan et al. 

(2013), this species is distributed mainly in the islands of 

Java and Bali, and found mostly on the cliff walls of 

headstone and tomb, or on the shaded cliff, or on the 
plastered roadside and dirt drainage ditch. The recorded 

altitude of species' presence is at 1150-1222 m asl. This 

species is capable of surviving and growing its colony 

among the biotic interactions between species in Java 

Island along with its climatic, physiographic, topographic, 

and edaphic conditions for the unrecorded periods of time. 

This has become a subject of interest for ecologist and 

botanist since the vast variety of enviro-climatic condition 

in Java Island more or less represents the enviro-climatic 

condition of Indonesia. Therefore, questions regarding 

whether there are other areas outside the island that are 
capable of supporting the survival of this species may arise. 

Then, an inquiry regarding how that suitability degree may 

change in conjunction with the possible changes in future 

climate conditions will also emerge. 
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MATERIALS AND METHODS 

Study area 

Indonesia is an archipelagic country located in the 

southeast region of Asia. This country consists of about 

17,508 islands wherein only 16,056 of its island names 

have been verified by the United Nations Group of Experts 

on Geographical Names (UNGEGN) in July 2017 

(https://unstats.un.org/unsd/ungegn/). The geographic 

scope of this study includes the region of approximately 6 

°N to 11°S latitude and 95 °E to 141 °E longitudes (Figure 
1), covering about 1.9 million km² of lands. The highest 

peak of Indonesia is Mt. Puncak Jaya at roughly 4,884 m 

asl located in Papua Island.  

The climate in Indonesia is varied wherein it is mostly 

experiencing a tropical rainforest climate with some areas 

have tropical monsoon and tropical savanna. Nevertheless, 

oceanic climates and subtropical highland climates are also 

found in several high-altitude regions in this country, 

mostly between 1,500 and 3,500 meters above sea level. 

Regions that are above 3,500 m asl (mostly in Papua 

highlands) experiencing tundra climate and subpolar 
oceanic climates (Climate-data.org). 

Procedures 

Presence Records 

For this study, authors collected the occurrence data of 

S. zollingeriana from two primary sources, i.e., field survey 

and the Global Biodiversity Information Facility (GBIF) 

database. Field survey aiming to obtain the primary 

presence records for the species was conducted in all 

provinces across Java Island between July 2007 and 

January 2014. The specimens found were identified using 

several references on Selaginella of the Malay Archipelago 
and adjacent regions (Alston 1934, 1935a,b, 1937, 1940; 

Wong 1982, 2010; Tsai and Shieh 1994; Li and Tan 2005; 

Chang et al. 2012; Zhang et al. 2013) to ensure the high-

confidence level of species identification. The coordinate 

of each specimen was recorded using Garmin eTrax GPS 

series. Subsequent to confirming the species taxonomy, 

twenty-four coordinate records were used in this study. 

None of the error-correction methods were conducted since  

we ensured that the level of telemetry error of modern GPS 

has little effect on the accuracy of the model (Montgomery 

et al. 2011). 

The second source of presence records was from the 

GBIF database (GBIF 2016). All of the records acquired 

from GBIF were carefully verified, and errors that may 

occur were corrected using Google Earth software (Google 

Earth Pro 2017). Records with no latitudinal and longitudinal 

information were geo-referenced using Biogeomancer 

Workbench (http: //www.biogeomancer.org) guided by 
locality descriptions on each datum, and then data records 

that do not have specific locality description and cannot be 

geo-referenced were removed (Guralnick et al. 2006). We 

comprehend the possibility of strong geographic biases that 

often contained in such open database wherein its data 

were collected from opportunistic observation and/or 

historical collection of records (Stolar and Nielsen 2015). 

Moreover, the biases mentioned above proved to have 

strong effects on modeling prediction ability and later 

interpretation (Kramer-Schadt et al. 2013; Fourcade et al. 

2014). Therefore, we conducted two out of five sampling 
bias correction methods proposed by Fourcade et al. 

(2014). Subsequently, after we identified the type of 

sampling data bias contained in the sampling data used for 

this study, we conducted two out of five sampling bias 

correction methods, i.e., (i) Spatial filtering, performed by 

creating a grid of 2 km x 2 km cell size and randomly 

select only one point of occurrence per grid cell. 

Nevertheless, it should be noted that the size of this grid is 

not the representation of approximate species' dispersal 

capabilities, but rather as a result of modifying the 10-km 

radius rule of spatial filtering proposed by Kramer-Schadt 
et al. (2013) and Boria et al. (2014). The grid creation and 

point selection were conducted using QuantumGIS 

software ver. 3.2.0 (QGIS Development Team 2017). (ii) 

Bias file, produced using Gaussian kernel density map 

approach and then included it into MaxEnt modeling 

process through the setting option (Dudik et al. 2005; Elith 

et al. 2011; Phillips et al. 2017). The remaining six 

presence records that considered suitable were combined 

with the data from field study; therefore, a total of 30 

points were used in this study.  

   
 

 
 

Figure 1. Area of study, Indonesia. (Base map: Google Physical Maps 2014) 
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Enviro-climatic variables 

Based on the previous screening process on the 

variables that are expected to have direct effect on the 

species distribution (e.g., Soria-auza 2009; Hu et al. 2015; 

Mod et al. 2016; Setyawan et al. 2017; Velazco et al. 2017; 

Setyawan et al. 2020a; Setyawan et al. 2020b), we 

collected 19 bioclimatic variables, three edaphic variables, 

and one altitudinal variable. Bioclimatic ver. 2.0 and 

altitude layers were collected from WorldClim Bioclimatic 

datasets website (www.worldclim.org). Global Soil pH 
(SpH) and soil organic carbon (SOC) datasets were 

collected from the International Center for Tropical 

Agriculture (https://dataverse.harvard.edu). Soil type 

dataset was collected from freely available Food and 

Agriculture Organization of the UN (FAO-UN) website 

(http://www.fao.org). Due to the limited availability, other 

variables considered as important and directly affecting 

species’ occurrence (i.e., biotic interactions, human 

disturbance, possible future land use/cover change, and 

species’ dispersal capability) were not included.  

It has been broadly acknowledged that the high 
correlation among bioclimatic layers will limit 

interpretation of the variable's contributions; thus, 

hindrance the correct inferences on the contribution of each 

variable for being made. Therefore, by using SDM toolbox 

Ver. 2.0 (Brown 2014), we performed autocorrelation 

calculation and automatically omitted the bioclimatic 

variables yielded correlation values above 0.85 

(Spearman’s rho coefficient) in the pairwise cross-

correlation matrix of each dataset (intra-dataset 

correlations) (Bedia et al. 2013). The remaining nine 

bioclimatic variables (i.e., bio_1, bio_2, bio_3, bio_4, 
bio_12, bio_13, bio_15, bio_17, and bio_19) were then 

compiled with three edaphic variables (FAO types of soil, 

Soil pH and Soil Organic Carbon), plus one environmental 

variable (i.e., altitude) (Table 1). 

Future scenarios 

The possible expansion of S. zollingeriana population 

may take decades to occur, and throughout that time, the 

bioclimatic conditions are highly possible to change. 

Accordingly, the distribution of suitable niches for S. 

zollingeriana to disperse may also change dynamically. To 

model this dynamic change of niche distribution, we used 

future bioclimatic scenarios acquired from the CGIAR 
Research Program on Climate Change, Agriculture, and 

Food Security website (www.ccafs-climate.org). Following 

the suggestion from Collins et al. (2011), we selected the 

HadGEM2-CC (Hadley Global Environment Model-2 

Carbon Cycle) global circulation model, which was 

developed by the Hadley Center United Kingdom, to be 

used in this study. Projection of future climate conditions is 

divided into several scenarios representing different 

greenhouse gas (GHG) scenarios. These scenarios are 

represented by Representative Carbon Pathways (RCP), 

namely RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5, and 
projected for the years 2030, 2050, and 2080 (averaged two 

decades up and down the year). RCP 2.6 represents the 

most optimistic projection which assumes that global GHG 

will increase slowly to reach its peak at 3.1 W/m2 between 

2010-2020, and then with the help of new technologies and 

climate policies, GHG will decline substantially thereafter 

to 2.6 W/m2 by the year 2100 (van Vuuren et al. 2007; 

Moss et al. 2010). RCP 4.5 and RCP 6.0 are moderate 

predictions wherein the emission will stabilize at 4.5 W/m2 

and 6.0 W/m2 respectively (Clarke et al. 2007). The most 

pessimistic projection is the RCP 8.5 projecting the 

emissions level will continue to increase throughout the 

century, reaching around 8.5 W/m2 as the highest level by 

the end of the century (Riahi et al. 2011). Assuming the 
most optimistic and the most pessimistic for future climate 

conditions and by considering the slow expansion rate of 

the species, we selected the RCP 2.6 and RCP 8.5 for the 

years 2030, 2050 and 2080 to be used as variables to model 

future suitable niche distribution for the species. Due to the 

limited availability of future projections, the other 

environmental variables (Soil pH, Soil Organic Carbon) 

remained unchanged. Furthermore, the same altitude layer 

was used since this variable is a static variable that remains 

unchanged with time.   

Due to its simplified physics and thermodynamics 
processes, coarse spatial resolution, and numerical 

schemes, and incomplete knowledge of climate systems, 

such climate model contains errors (biases) (Ramirez-

Villegas et al. 2013). Therefore, the implementation of bias 

correction is necessary. Using correction data provided by 

CGIAR-CCAFS, we implemented three different 

calibration approaches: (i) Change Factor (CF): in this 

approach, the raw GCM outputs current values are 

subtracted from the future simulated values, resulting in 

"climate anomalies" which are then added to the 

observational dataset (Tabor and Williams 2010), (ii) Bias 
Correction, this approach revise the projected raw GCM 

output using the differences in the mean and variability 

between observations and GCM, in a reference period 

(Hawkins et al. 2013), (iii) Quantile Mapping (QM), this 

approach removes the systematic bias in the GCM 

simulations and accounts the biases in all statistical 

moments, however, like all statistical downscaling 

approaches, it is assumed that biases relative to historical 

observations will be constant in the projection period 

(Thrasher et al. 2012). 
 
 
Table 1. Environmental variables used to build the models      
 

Code Name Unit 

Alt Altitude m asl 

bio_1 Annual Mean Temperature C×10 
bio_2 Mean Diurnal Range C×10 
bio_3 Isothermality ×100 

bio_4 Temperature Seasonality SD×100 
bio_12 Annual Precipitation mm 
bio_13 Precipitation of Wettest Month mm 
bio_15 Precipitation Seasonality 

(Coefficient of Variation) 
mm 

bio_17 Precipitation of Driest Quarter mm 
bio_19 Precipitation of Coldest Quarter mm 
Soil_types FAO soil classification  

soil_carbon Soil Organic Carbon  
soil_ph Soil pH  

 

http://www.worldclim.org/
https://dataverse.harvard.edu/
http://www.ccafs-climate.org/
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Modeling 

For this study, we used freely available MaxEnt 

software ver. 3.4.1 (Philips et al. 2017) acquired from the 

American Museum of Natural History 

(https://biodiversityinformatics.amnh.org). Several studies 

have presented the importance of parameter configuration 

in MaxEnt modeling, rather than using default parameter 

setting (e.g., Warren and Seifert 2011; Merow et al. 2013; 

Yackulic et al. 2013; Halvorsen et al. 2015), especially 

when the number of presence data is small (Merow et al. 

2013; van Proosdij et al. 2016; Pearson et al. 2007; Morales 
et al. 2017). Therefore, we built this model after reviewing 

and repeatedly testing the various combinations of 

parameter settings so that the model, which was built using 

small presence data, would yield more reliable results.  

The following parameter settings were adjusted based 

on the species-specific considerations and reflecting our 

intended a priori assumptions (Peterson et al. 2011; Araujo 

and Peterson 2012; Merow et al. 2013). Maximum 

iterations were set to 5,000 for each run to allow the model 

to have adequate time for converging along with the 

Convergence threshold was set to 1 x 10-6. Each trial was 
replicated ten times (the averaged value is the one used as 

the result) using “Bootstrap” as the replicated run type with 

20% random test percentage (Merow et al. 2013). The 

"Bootstrap" used in this study means that for each run a 

random of 20% of presence data would be sampled as test 

data. Nevertheless, opposite to subsampling, the sampled 

data is replaced so that the point may be included in test 

data more than once. To avoid over-fitting and to assume 

that the species respond directly to the predictors (vs. to 

correlated factors), we decided to "smooth" the model by 

choosing only hinge features (Merow et al. 2013). Along 

with the default prevalence value of 0.5, we tested several 
“multiplier regularization (mr)” (1, 2, and 3) and then 

selected the best mr value based on the calculated TSS and 

pAUC value, visual evaluation, and jackknife test 

evaluation (Elith et al. 2006; Merrow et al. 2013; 

Radosavljevic and Anderson 2013). Considering the aim of 

this study, which is to model species expansion and to 

accommodate the small size of presence data, we chose the 

best multiplier regularization value of 2.00. Since one of 

the aims of the study is to find the distribution of similar 

environmental conditions across the country from where 

the species currently maintain populations (in this case Java 
Island), we sampled background points at the maximum 

number of 10,000 from this island only. We used the 

"projection" feature to extrapolate the model into different 

climate projections and different islands across the country 

(van der Wall et al. 2009).  

Data analysis 

One of the main outputs of Maxent is an ASCII grid 

representing the distribution of potentially suitable niches 

of the species across the study area. Using the "logistic" 

output format, representation of probabilities in the grid is 

linearly scaled between 0 (lowest) to 1 (highest) probability 

(Philips and Dudik 2008). To conveniently quantify and 

compare the predictive grids, we applied binary 

transformation by categorized the values into two 

categories (i.e., suitable and unsuitable) using the selected 

threshold rule. Selecting threshold can be deceptive since 

one must consider the relative importance differences of 

commission and omission errors and must emphasize one 

after the other based on the study objectives. (Phillips and 

Dudik 2008; Nenzen and Araujo 2011; Bean et al. 2012; 

Syfert et al. 2013). Norris (2014) and Liu et al. (2016) have 

explained comprehensively the selection process of a 
threshold for modeling with presence-only data. 

Acknowledging the necessity to reduce omission error in 

the case of modeling species having a possibility to expand 

in the future, "minimum training presence" was selected as 

the threshold rule applied in the model. The potentially 

suitable niche was then reclassified into three classes: low 

suitability (25-50% probability of occurrence), medium 

suitability, (51-75% probability of occurrence), and high 

suitability (>75% probability of occurrence), by using the 

"natural breaks (Jenks) classification method in Reclassify 

Analysis of ArcMap ver. 10.3 (ESRI 2011).    
We also performed the jackknife test to calculate the 

variables' relative contribution to the model and quantify 

the degree to which these variables affect the prediction. 

Jackknife test shows which variable appears to have the 

most information that is not present in the other variables 

and which variable has the most useful information by 

itself (Phillips and Dudik 2008). The predictive grids, 

which by default are in ASCII format, were further 

analyzed using QuantumGIS software ver. 3.2.0 (QGIS 

Development Team 2017). 

The area under the receiver operating characteristic 
(ROC) Curve (AUC) value, which was produced by 

MaxEnt and frequently used to evaluate performance 

model, has been proved to provide limited useful 

information in the process of evaluating model 

performance (Lobo et al. 2008; Bahn and McGill 2013; and 

Aguirre-Gutiérrez et al. 2013). Therefore, several studies 

used different statistical approaches. Allouche et al. (2006) 

proposed True Skill Statistic (TSS) as a post-hoc evaluation 

for the MaxEnt model built by presence-only data and has 

been used frequently since it was introduced. True Skill 

Statistic (TSS) (also known as the Youden index) 

calculation is derived by calculating the summary of 
sensitivity and specificity minus one (Youden 1950). This 

approach has been proven to be free from the dependence 

of prevalence while still keeping all the advantages of 

kappa which was widely used as an evaluation tool. 

Cohen's Kappa has been widely used due to its simplicity, 

the fact that both commission and omission errors are 

accounted for in one parameter, and its relative tolerance to 

zero values in the confusion matrix (Manel et al. 2002). 

However, several studies have criticized the kappa statistic 

for being inherently dependent on prevalence and claimed 

that this dependency introduces bias and statistical artifacts 
to estimates of accuracy (Cicchetti and Feinstein 1990; 

Byrt et al. 1993; Lantz and Nebenzahl 1996). 

Consequently, we assume that the use of TSS is more 

suitable for this study. 
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RESULTS AND DISCUSSION 

The current distribution of potentially suitable niche of S. 

zollingeriana in Java Island  

The model built using 30 presence data along with 

twelve enviro-climatic variables depicts the spatial distribution 

of potentially suitable niche for S. zollingeriana across the 

Java Island wherein this species is suggested endemically 

maintaining its population. Subsequent to categorizing the 

output into binary categories (suitable vs. unsuitable), the 

predicted suitable habitat were then reclassified into three 
classes by using the "natural breaks (Jenks) classification 

method i.e., low suitability (25-50% probability of occurrence), 

medium suitability (51-75% probability of occurrence), and 

high suitability (>75% probability of occurrence) to allow 

us to project the distribution of potentially suitable niche in 

different suitable level under different climate condition.  

The model predicted roughly 17.22% (22,095 km2) of the 

Java Island area is potentially suitable niche for S. 

zollingeriana. This number consisted of 10.93% (14,028 

km2), 4.75% (6,097 km2), and 1.54% (1,970 km2) of low, 

medium, and high suitability areas, respectively (Figure 2).  

The potentially suitable niche is distributed mainly in 

the mountainous areas of the island. Nevertheless, the 

surrounding lowland areas are also predicted to be 

potentially suitable although they have low suitability 

category. Altitudinally, the low probability areas were 
mainly distributed in lower-end up to higher areas at the 

altitude of between 300 and 2100 m asl, whereas medium 

probability areas were mainly distributed at a higher 

altitude of between 1300 and 2800 m asl. Moreover, the 

high probability areas were also mainly distributed in the 

highland region at the altitude of 1800 to 3600 m asl 

(Figure 3). 

 

 

 
 

Figure 2. Predicted distribution of potentially suitable niche for S. zollingeriana in Java Island under current climate conditions. (Base 
map: Google Physical Maps 2014) 
 

 
Figure 3. Predicted altitudinal distribution of potentially suitable niche of S. zollingeriana in Java Island under current climate condition  
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Model evaluation 

Prior to interpreting the results further or using them in 

any procedure, a post-hoc model evaluation is commonly 

performed to assess the relative predicting performance and 

statistical significance of the model (Peterson et al. 2011). 

The AUC values may have been accentuated to be 

misleading and do not provide a strong reflection of model 

accuracy; however, we retrieved the AUC value of 0.954 

to, by some degrees, illustrate that the model built in this 

study performed better than any model built using set of 
random predictors and to illustrates the discrimination 

ability of the model (Lobo et al. 2008; Peterson et al. 2008; 

Jimenez-Valverde 2012, 2014; Fourcade et al. 2014, 2017). 

Additionally, the True Skill Statistic (TSS) value, which 

has been proposed as an alternative metric of evaluation 

(e.g., Allouche et al. 2006; Hijmans 2012; Phillips and 

Elith 2010), was retrieved by calculating the summary of 

sensitivity and specificity minus one. The TSS value of 

0.789 means that the model has a better ability at 

discerning the presence and background points given the 

threshold supplied than any random model. Therefore, the 
value gives the impression that model built in this study 

have a good degree of agreement, good predictive capacity, 

and also can be interpreted as evidence for the real 

ecological phenomenon, based on environmental variables 

used, rather than statistical artifacts (Allouche et al. 2006; 

Li and Guo 2013). 

 

The dominant environmental variables and their 

significance on the probability of species' presence 

According to the relative contributions of 

environmental variables generated by Maxent (Table 2), 
the top three variables that significantly affect the 

distribution of S. zollingeriana were as follows: (i) Altitude 

(Alt), (ii) Annual mean temperature (Bio_1), and (iii) Soil 

types (Soil_types). The combination of these three 

variables contributed to a total of 88.5% to the MaxEnt 

model, whereas the rest of the variables contributed each 

less than 5%. Additionally, we retrieved the alternative 

estimation of variable importance to the models via the 

jackknife test (Figure 4). The results depicted that the 

highest environmental variable with the highest training 

gain, when used in isolation, is annual mean temperature 

(bio_1), which means that this single variable appeared to 

have the most useful information by itself and proved to 
have the highest permutation importance value of 50.4%. 

Moreover, the environmental variable that decreases the 

gain the most when it is omitted is soil types (Soil_types), 

which therefore appears to have the most information that 

is not present in the other variables (Phillips and Dudik 

2008). 

 

 
Table 2. Percentage of variable contribution to the final model 
 

Variables Description 
Contribution 

(%) 

Alt Altitude 35.5 
bio_1 Annual Mean Temperature  27.2 
Soil_types FAO soil classification 25.8 
bio_3 Ishotermality 3.9 
bio_12 Annual Precipitation 3.1 
bio_13 Precipitation of Wettest Month 1.9 
bio_19 Precipitation of Coldest Quarter 1 
soil_carbon Soil Organic Carbon 0.8 

bio_15 Precipitation Seasonality 
(Coefficient of Variation) 

0.5 

bio_12 Annual Precipitation 0.3 
bio_4 Temperature Seasonality 0 
bio_17 Precipitation of Driest Quarter 0 
soil_ph Soil pH 0 

 

 

 

 
 
Figure 4. Results of jackknife test of relative importance of predictor variables for the model 
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The response curves were presented to show how each 

of the dominant environmental variables affects the 

MaxEnt prediction. These plots of curves reflect the 

dependence of predicted suitability both on the selected 

variable and on dependencies induced by the correlation 

between the selected variable and other variables (Phillips 

et al. 2008). The response curve between the presence 

probability of S. zollingeriana and altitude (alt) (Figure 5a) 

shows that the probability of species' presence is increasing 

gradually along with the increase of altitude. The presence 
probabilities are higher than 50% at the altitude of about 

800 m asl and then reached their peak (probability 70%) at 

about 1,100 m asl before gradually decreased to 60% 

probability at the altitude of higher than 1,500 m asl. The 

next response curve (Figure 5b) shows the optimum annual 

mean temperature (bio_1) for this species’ niche ranged 

between 120C and 210C before the probability presence 

gradually declined at the mean temperature above 220C. 

Furthermore, the third most dominant variable affecting 

species niche is soil types. The figure shows that there are 

three types of soil having the highest probability of species' 
presence, i.e., Be: Eutric Cambisols (code: 4475), Lo: 

Orthic Luvisols (code: 4535), Nd: Dystric Nitosols (code: 

4543). These types of soils are inherently fertile of the 

tropical soils because of their high nutrient content and 

deep, permeable structure; thus mostly exploited for 

agriculture purposes (FAO 2019) (Figure 5c). 

Possible species expansion in the future based on potential 

niche distribution 

The model which was built for Java Island was then 

projected into future climatic condition to a wider extent 

across Indonesia to simulate the possible niche distribution 
in other islands of the country (Figure 6). The lowest S. 

zollingeriana presence threshold to predict and map the 

suitable niche was set at the “minimum training presence” 

threshold (probability presence = 0.23). The presence 

probability above the threshold was then reclassified into 

three probability classes (see method). Overall, the model 

predicted the possibility of species expansion into the other 

four big islands (i.e., Sumatera, Borneo, Sulawesi, and 

Papua). Nevertheless, the distribution of the potentially 

suitable niche is non-uniform wherein in some islands the 

niche distribution is wider while in the others distribution is 

narrower. The possible explanation for this phenomenon is 
due to the inherent differences in environmental conditions 

among the big islands. Following the result of variable 

contribution and jackknife calculation, discrepancies in 

altitude, temperature, and Isothermality conditions are 

predicted to influence the distribution pattern of suitable 

niches in these islands significantly. 

 

 
A 

 
B 

 
C 

 
Figure 5. Response curves from MaxEnt for the most important 
variables for the species distribution model: A. Altitude; B. 

Annual mean temperature (in 0C*10); C. FAO soil types 
classification. The curves show the mean response of the 10 
replicate MaxEnt runs (red) and the mean +/- one standard 
deviation (blue, two shades for categorical variables). 
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Figure 6. Predicted distribution of potentially suitable niche for S. zollingeriana across Indonesia under two different future climate 
scenarios 
 

 

Considering the pace needed for the species to disperse, 
the model was not projected into current climate condition 

but to the future condition as early as 2030 under two 

different climate scenarios. In general, using the most 

optimistic GHG emission scenarios produced a wider 

distribution of possible suitable niches than the more 

pessimistic scenario that produces a narrower and limited 

distribution of suitable niches (RCP 8.5). Across the time 

period to the further future, all of the scenarios projected a 

declining trend of the availability of suitable niche wherein 

from 2030 to 2080 the modeled niche declined about 58% 

and 59% at RCP 2.6 and RCP 8.5, respectively (Table 3). 

In all of the scenarios, lower probability has a more 
dispersed distribution than higher probabilities accounted 

about two-third of suitable niches are categorized as having 

a low probability (25%-50%). We then extracted the 
altitudinal value of the predicted suitable habitat from all 

scenarios in the attempt of investigating whether there are 

discrepancies in the altitudinal distribution among the 

scenarios. Across the periods of time, our models showed 

that the niche is projected to marginally shifted to higher 

altitudes. Even though the shifting is relatively small, the 

figures still represent the changes in climatic variability 

that may affect the future distribution of the species. From 

the current distribution to the year 2080 minimum 

altitudinal distribution shifted higher from about 300 m asl 

to around 511 m asl. The maximum altitudinal distribution 

was also projected to become higher from approximately 
3600 m asl to about 3786 m asl, whereas the medial also 

slightly become higher by about 250 m (Figure 7). 
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Table 3. The dynamics of potentially suitable niche for S. zollingeriana across Indonesia under two future climate scenarios in different 
periods of time    

 

Year RCP Projection 
Area × 103 km2 

Low Medium High Total 

2030 RCP 2.6 343 92.6 32.0 467 

 
RCP 8.5 308 80.6 28.3 417 

2050 RCP 2.6 299 67.2 24.2 391 

 
RCP 8.5 243 56.5 19.0 319 

2080 RCP 2.6 209 53.5 12.7 275 

 
RCP 8.5 190 49.7 9.1 249 

 
 

 
 

Figure 7. Predicted changes in the altitudinal distribution of potentially suitable niches under current and future climate projections. The 
box plots present median, lower quartile, upper quartile, maximum and minimum observations. Altitude is measured in m asl. (meter 

above sea level) 
 
 
 

Discussion 

This study presents a primary attempt to model the 

potential range expansion of S. zollingeriana by every 

possible means of species' proliferation, spread, and 

transportation while under the presumption of its range 

expansion will be greatly affected by differences in future 
climate condition. Across Java Island, it has been predicted 

that about 17.22% (22,095 km2) of its area is suitable for 

the species based on the variables induced. Moreover, the 

model predicted the niche distribution of the species in its 

native island (Java) would be driven by the altitude level, 

the annual mean temperature, and its isothermality. 

Geographical variable, such as altitude, often connotes 

atmospheric pressure, local precipitation and temperature 

features (Austin 2002; Körner 2007); thus expected to 

affect greatly on determining the suitability of species in a 

certain niche. According to literature, Selaginella is a 

herbaceous plant that will likely grow in the moist or rather 
wet region. Therefore, elevation and temperature 

codependency affecting humidity plays an important role in 

the cause of species' survival. Isothermality (bio_3) is 

defined as the quantification of how large the diurnal 

temperature range oscillates with annual temperature 

oscillations (O'Donnell and Ignizio 2012). Previous studies 

(e.g., Jagels 1970, Eickmeier 1986) confirmed the 

importance of temperature and its stability in ensuring the 

survival of genus Selaginella. 

The niche of S. zollingeriana in Java Island is predicted 

to be distributed widely but fragmented mainly to occur 

only in the highland areas at above 500 m asl. 
Discrepancies in local environmental conditions connoted 

by altitude (i.e., temperature and humidity) are to be 

expected as the cause of little to none suitable niche found 

in the lowland areas. Due to the adiabatic nature of the 

Earth's atmosphere, the denser air in the lowland has a 

greater heat absorption capacity than the thinner air in the 

highland areas. Therefore, the mean temperature in 

highland is expected to be lower than that of lowland areas. 

Temperature, as the second most dominant variable, 

allegedly affects both the photosynthetic capability and 

preservation of photosynthetic apparatus of Selaginella 

species (Jagels 1970, Eickmeier 1986). The negative 
correlation between temperature and the probability of 

species' presence (Figure 5c) illustrates the unsuitability of 

warmer temperature in lowland areas affecting species 

survival. For instance, Soni et al. (2012) in their study 

stated that Selaginella bryopteris show a very poor 

mechanism for its stomatal regulation in response to high 
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temperature, which also affects its photosynthesis 

capability. Moreover, in regards to the effect of changes in 

precipitation level, studies conducted by Deeba et al. 

(2009) and Pandey et al. (2010) demonstrated drastic 

inhibition in net photosynthesis and maximal 

photochemical efficiency when Selaginella bryopteris 

induced with dehydration stress. Desiccation on this 

Selaginella species can also cause enhanced production of 

reactive oxygen species (ROS) and increased lipid 

peroxidation. In consequence, the increasing level of mean 
temperature and the decreasing level of precipitation is the 

most important compounding factor in determining the 

sustainability of Selaginella's habitat in the future.  

Those allegations are aligned with the results of the 

predicted distribution of potentially suitable niches under 

future climate conditions across the Indonesian 

archipelago. Projected future climate condition in 

Indonesia has been predicted will significantly disturb the 

distribution of potentially suitable niche of S. zollingeriana, 

altering its geographical distribution pattern. Under the 

lowest GHG emission projection (RCP 2.6), wherein 
radiative forcing will gradually rise before it stabilizes at 

2.6 W/m2 by 2100, the annual mean temperature will rise to 

about 0.4-0.70C in all areas of Indonesia (Meinshausen et 

al. 2011; IPCC 2014). While under the worst emission 

scenario (RCP 8.5), the annual temperature will rise to 

1.70C. This condition is predicted to decrease the 

probability of regional niche to support the existence of S. 

zollingeriana. From the total of 467×103 km2 predicted 

suitable niche in 2030 under RCP 2.6, the predicted 

suitable niche would decrease significantly to around half 

the number (249×103 km2). Global warming is also 
projected to favor range shifts, especially upward 

migrations, for many species for which temperatures are 

the main limiting factor of their geographic distribution 

(Parmesan et al. 1999; Saxe et al. 2001; Bale et al. 2002; 

Harvell et al. 2002). Distributional shift assessment using 

the extracted altitudinal value of the predicted suitable 

niche under current and future conditions indicate that there 

will be upward shifting to higher elevation area as the 

temperature gradually warming. This indication is aligned 

with certain studies that predicted a shift of forest 

ecosystems to a higher altitude under projected future 

climate conditions (e.g., Walther et al. 2003; Bertrand et al. 
2011). Even though the shifting figures are relatively small, 

the finding still illustrates the changes in the suitability 

level of certain areas/regions affected by climate changes. 

The increase in temperature and possible occurrence of 

severe drought, as indicated by precipitation variability in 

those areas, would increase the level of stress the plants 

received from its surrounding (Kelly and Goulden 2008). 

Therefore, it is expected to reduce the species' capability to 

survive in the drier-warmer lower parts of its altitude range 

(Allen and Breshears 1998; Lenoir et al. 2008) and increase 

its competitive ability and tolerance in the wetter and 
cooler upper parts of its altitude range (Parmesan 2006). 

Alongside the climatic factors, the ability of S. 

zollingeriana to disperse outside of its current geographical 

range is also likely to be governed by ecological 

determinants that affect propagule (in case of Selaginella 

species, is its spore) departure, transport, and arrival, 

respectively. Several factors potentially will be affected by 

climate conditions in the process of species' dispersal, i.e., 

plant fecundity, dispersal pathways, spore delivery sites, 

and biotic interactions at the new geographical sites 

(Hampe 2011). Clark et al. (2001) demonstrated on 

theoretical grounds that variation in fecundity (net 

productive rate) can exert strong effects on expansion rates. 

The authors highlight the finding that climate-driven 

changes in population fecundity could play a key role in 
future range expansions, even though the authors 

emphasized regarding fecundity consideration as a variable 

parameter considerably reduces model-based estimates of 

past expansion rates. Moreover, numerous experimental 

studies have shown that elevated CO2 level can 

significantly increase the pollen, spores, flower, and seed 

output of individual plants (LaDeau and Clark 2001, 

2006a; Jablonski et al. 2002; Stiling et al. 2004; Way et al. 

2010), although this increase may be accompanied by 

decreasing quality of the seeds (most notably is in terms of 

nitrogen content) (Jablonski et al. 2002; Stiling et al. 2004; 
Way et al. 2010). In addition, a number of field studies 

have successfully monitored multi-year patterns of plants 

fecundity in populations near the (climate-governed) 

leading edge of species ranges (i.e., Pigott and Huntley 

1981; Hofgaard 1993; Holm 1994; Despland and Houle 

1997; Meunier et al. 2007). Unsurprisingly, propagules 

productions are typically linked with favorable climatic 

conditions. Consequently, future warming may be expected 

to result in higher long-term average fecundity; however, it 

may be accompanied by irregular propagule production and 

decreased propagule quality. Nevertheless, further 
investigation is needed to understand more about projected 

future climate conditions with plants fecundity (e.g., 

genetic-evolutionary component, Allee effects, etc.).  

The trajectories of migrating S. zollingeriana’s 

propagules are expected to largely be determined by the 

landscape context of the Indonesian archipelago. It is well 

known from phylogeographical studies that major 

geographic barriers have influenced past population and 

range dynamics (Hewitt 2010). The strong context-

dependence of long-distance dispersal and colonization 

resulting events is possibly the main reason for the 

exceptionally peculiar nature of past range expansions (Hu 
et al. 2009; Jackson et al. 2009). Therefore, a better 

understanding of how the biotic and abiotic environment 

provokes expansion routes and dispersal pathways is 

critical for improving predictions of future range shifts. 

Investigation of future climate changes that might affect 

dispersal pathways is surprisingly limited. Recently, 

Trenberth et al. (2007), Kuparin et al. (2009), and Nathan 

et al. (2011) found that the combination of increasing air 

temperature and increasing frequency of winds and storms 

can indeed favor the frequency of long-distance wind-

dispersal of propagule, although the effect seems rather 
small. The impact of future climate change on the behavior 

of biotic dispersal agents is even more difficult to predict. 

The only well-known prediction of the effect of climate 

change on biotic dispersal is that climate-driven changes of 

bird migration routes and wintering grounds could result in 
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substantial changes in the abundance of avian seed 

dispersers (Berthold et al. 1992; Rivalan et al. 2007; Carlo 

and Morales 2008). Since there is limited information on 

how S. zollingeriana is dispersed in Java, it is difficult on 

which aspect of propagule dispersal of the species will be 

significantly affected by future climate changes.    

From a landscape perspective, climate changes can 

result in loosening or constricting climate constraints on 

plants in the growing area available for colonization as well 

as increasing connectivity for patches (Hampe 2011). 
When climate constraints loosening, the propagule pressure 

required for establishing self-sustaining populations would 

rapidly decrease since both seed sources and suitable 

establishment sites become more abundant. Otherwise, 

constricted climate constraints will increase pressure for 

propagule to establish self-sustaining populations 

(Simberloff 2009). Furthermore, climate change is not only 

influencing the movement and establishment of recruiting 

colonizer but also imply indirect effects through its 

mediation of biotic interactions that intervene at different 

stages of the recruitment process. The fundamental 
complexity and context-dependence of such biotic 

interactions burden predictions with a great uncertainty 

upon future changes in biotic interactions and their 

consequences on the survival of expanding species 

(Mitchell et al. 2006; Parmesan 2006). Therefore, further 

investigations on the true climate constraints of S. 

zollingeriana and its biotic interactions in its native region 

are pivotal to predict the survival of species’ colonization 

in the new regions.     

The major limitations for modeling plant expansion 

range are the assumption that species are at the equilibrium 
with their environment and the assumption of niche 

conservatism, wherein climate niches of the species from 

the native area can be projected onto new geographical 

spaces (Gallien et al. 2012; Barbet-Massin 2018). Although 

S. zollingeriana has a sufficiently long history in Java and 

has been used for traditional uses by the communities to 

have sampled most of the environmental conditions, its 

distribution may not yet at equilibrium. Moreover, recent 

model accuracy techniques (such as TSS) might not be 

appropriate for range expansion modeling. The not-so-high 

TSS value of the model (0.789) could also mean either that 

the variables used in this study do not genuinely capture the 
enviro-climatic determinants of the species' niche 

distribution, or that the variables are correct and the species 

has a huge potential for spreading wider into the new range 

of suitable niche.  

There are three presumptive factors that are likely to 

affect the accuracy of the model. Firstly, MaxEnt assumes 

the current distribution data of the species provides a good 

indication of their true potential range. Whereby this is not 

entirely correct, the potential range will be under- or over-

estimated. The potential range could be overestimated for 

species occurring in few scattered locations throughout the 
entire area of study, whereas it could be underestimated for 

species that currently exist in a small, clumped range. 

Secondly, despite the bias corrections conducted, 

unrepresentative data from field studies and databases may 

have led to an underestimation of the current and potential 

distribution of less conspicuous species. Lastly, the process 

of averaging the climatic suitability values per 1 km2 cell 

assumes that the mean values represent the location where 

the species occurs. The likelihood of a significant error in 

this assumption depends on the variability of the climatic 

factors in the cells in the study area. At the broad scale at 

which this study is intended to collect information 

regarding the possibility of suitable niche in the other 

islands of Indonesia, these factors may not have a 

substantial effect on the overall accuracy or usefulness of 
the results. Further detailed assessments, however, will be 

necessary for further utilization of this study (e.g., to 

inform management and planning, conservation efforts, 

etc.). Despite the limitations mentioned above, it is 

reasonable to presume the robustness of the predicted 

trends of suitable niche distribution at the level of 

acceptable for a primary study. The construction of a more 

ideal model requires the availability of multiple 

compounding factors which are expected to have a direct or 

indirect effect on the target species and its associated biota. 

Potential human-induced land use/land cover changes in 
the potential new region of occupation, biotic interactions 

between species in the new regional ecosystems, more 

detailed enviro-climatic data, and better representation of 

variability of species' niche are several examples of 

variables that are expected to be pivotal in constructing a 

more ideal model. Nevertheless, with the currently 

available data, we could make inferences that if the 

propagules of S. zollingeriana could be dispersed across 

the country, the availability of potentially suitable habitat 

could be disturbed by the recent and future changes in 

climate conditions. Therefore, the successfulness of S. 
zollingeria’s expansion could severely be hindered by 

future climate changes.  
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