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Abstract. Setyawan AD, Supriatna J, Nisyawati, Nursamsi I, Sutarno, Sugiyarto, Sunarto, Pradan P, Budiharta S, Pitoyo A, Suhardono S, 
Setyono P, Indrawan M. 2020. Anticipated climate changes reveal shifting in habitat suitability of high-altitude selaginellas in Java, 
Indonesia. Biodiversitas 21: 5482-5497. High-altitude ecosystems with humid and cool climate are the preferred habitat for some 
Selaginella species (selaginellas). Such habitats are available in Java, Indonesia, which also has fertile soils with rich mineral contents 
resulted from volcanic activities. However, the high-altitude ecosystems in Java are threatened by various anthropogenic activities as well 
as changes in climate conditions, potentially affecting some Selaginella species. This study aimed to investigate the shift in suitable habitat 
of four species of high-altitude Selaginella spp. (Selaginella involvens, S. opaca, S. ornata, and S. remotifolia) in Java Island under current 
and future climate conditions predicted by several representative greenhouse gas concentration pathways. Presence data of Selaginella 

localities were collected from field survey between 2007 and 2014 across the island, as well as occurrence points from the Global 
Biodiversity Information Facility database. A total of 1,721 occurrence points data along with environmental and climate data were used 
to develop species distribution models using MaxEnt. Future habitat distributions were projected under four climate scenarios to see the 
shift in suitable habitat and altitudinal ranges. The results showed that the distribution of the four high-altitude Selaginella species are 
strongly influenced by altitude, annual average temperature, and annual rainfall. In the present time, 37.32% (48,974 km2) of the area of 
Java has been predicted to be suitable for high-altitude Selaginella. Under the optimistic climate scenario (RCP 2.6), the highly suitable 
area will likely to decrease by almost 35% in the year 2080, whereas the medium and low suitable areas will reduce by about 37.2% and 
18.3%, respectively. Under the pessimistic scenario (RCP 8.5), about 21.2% of low suitable areas will be lost in 2080, whereas the medium 

and highly suitable areas are predicted to decrease by around 38.1% and 33.4%, respectively. Under the pessimistic scenario, there will 
be upward shift by 51.1 m in the year 2030 from the current’s mean altitude and will shift by almost 150 m in the year 2080. The maximum 
altitude of predicted suitable habitat is also predicted to increase to reach almost 3500 m asl in the year 2080. The results of this study 
imply that habitat shift of four high-altitude Selaginella species varies depending on the scenario, but in all cases, the losses are greater 
than gains.  
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INTRODUCTION 

Java Island (Indonesia) is located in equatorial zone and 

geographically lies 7°29′30″S 110°00′16″E, covering an 

approximately 138,793.6 km2 area of land. This island is 

almost entirely of volcanic origin which contains thirty-eight 

mountains, forming an east-west spine that has at one time 

or another been active volcanoes (Thomson 2013). The 

highest volcano in Java is Mount Semeru (3,676 m), whereas 

the most active volcano on the island, and also in Indonesia, 

is Mount Merapi (2,930 m). Like most islands in the 
equatorial zone, Java Island has only two seasons, i.e. wet 

season (during October-April) and dry season (during May-

September). Java Island has a wide range of precipitation 

rates that can be divided into three categories of area. The 

western region (Banten and West Java Province) and central 

region (Central Java Province and Special Region of 

Yogyakarta) have the same average rainfall at about 2000 

mm per year. Eastern area of Java (East Java Province), 

compared to the western region, has lower precipitation at 
about 1900 mm per year. The areas with high altitude have 

a higher precipitation rate and in some high-altitude areas in 

Java precipitation could reach up to between 3000 and 5000 

mm per annum (Qian et al. 2010). Likewise, the average 

temperature of Java Island can be ranged differently 

according to its altitude feature. Coastal areas have an 

average temperature of between 22 ºC and 32 ºC. Whereas 

in the areas with an altitude of between 400 and 1350 m asl 



SETYAWAN et al. – Habitat suitability shifts of high-altitude selaginellas due to climate change 

 

5483 

(above sea level), the average temperature ranges between 

18 ºC and 29 ºC. Higher altitude areas (above 1350 m asl) 

generally have lower temperatures, in this case, the lowest 

temperature in Java Island can reach minus 4 ºC which was 

recorded in Ranu Pani area (Mount Semeru) (Hariyati et al. 

2013). 

The geographical and climatic condition of Java along 

with the rich biological diversity made this island 

categorized as one of the 25 identified biodiversity hotspots 

by Myers et al. (2000), overlap with the four closest 
biologically richest hotspots, such as Indo-Burma, 

Peninsular Malaysia, Wallacea, and the Philippines. This 

island is a suitable habitat for about 25 species of Selaginella 

which five of them endemic species to Java Island 

(Setyawan 2008; Setyawan et al. 2016), making it as the 

island with the richest diversity of Selaginella species in 

Indonesia (Wijayanto 2014). Altitudinally, Selaginella 

grows in lowlands and highlands, and there are some species 

that grow in between the two areas, each with its own 

preference (Setyawan 2008). Four of the most predominant 

and prominent species of high-altitude Selaginella in Java 
are Selaginella opaca Warb., Selaginella ornata (Hook & 

Grev.) Spring., Selaginella remotifolia Spring., and 

Selaginella involvens (Sw.) Spring (Setyawan 2012; 

Setyawan et al. 2012, 2013, 2015c). However, the high-

altitude ecosystems of this island are currently under threat 

from various anthropogenic activities, including conversion 

into agriculture land especially for vegetable production, 

expansion of settlements and tourism, and forestry. There is 

another threat to these high-altitude ecosystems which is 

often overlooked, namely climate change (Setyawan et al. 

2020). 
Climate is one of the most important factors influencing 

the sustainability of plant species, vegetation pattern, and 

structure and ecology of forest (Kumar 2011). Climate has 

long been identified as a primary control of the geographic 

distribution of plant species (Forman 1964). However, 

current global climate condition is already moving toward 

dangerous and unprecedented conditions driven by major 

and pervasive anthropogenic activities on the Earth's 

atmosphere, land surface, and waters (IPCC 2007). Over the 

period between 1880 and 2012, The Intergovernmental 

Panel on Climate Change (IPCC) in the Fifth Assessment 

Report (AR5) stated that the average global temperature rose 
by about 0.85 ºC. This condition can be seen as a potentially 

devastating threat to the environment and all life within it 

(Fitzpatrick et al. 2008; Beckage et al. 2008; Hasanuzzaman 

et al. 2013). Furthermore, IPCC has developed predictive 

scenarios on the future of global climate conditions, 

projecting a further increase in global mean surface 

temperature by 2.6-4.8 ºC above pre-industrial levels, an 

increase in flood and drought incidences, and spatial and 

temporal changes in precipitation patterns in the year 2100 

(IPCC 2014).  

High-altitude ecosystems are likely to be more sensitive 
to global warming, owing to the contraction of climatically 

suitable areas for living organisms along with the increase in 

elevation (Guisan et al. 1995; Theurillat et al. 1998; Diaz et 

al. 2003; Beniston 2006). Recent study suggested that the 

unprecedented rates of warming at high elevation ecosystem 

during the 21st century are predicted two or three times 

greater than the rates of warming during the 20th century 

(Nogue´s-Bravo et al. 2006). These changes are expected to 

have devastating effects on plant communities in this 

ecosystem (Guisan et al. 1995; Beniston et al. 1996; Guisan 

and Theurillat 2000; Walther 2003; Fitzpatrick and 

Hargrove 2009).  

Along with the environmental degradation caused by 

various anthropogenic activities, climate change is 

considered will negatively affect the current patterns of plant 
diversity (Belgacem et al. 2008). These compounding 

threats are expected to lead to low emergence of annual 

species, change the life cycle of plants, changes in 

phenology and the timing of reproduction, and finally 

reducing plants diversity (Thuiller et al. 2008; Belgacem et 

al. 2008; Hilbish et al. 2010; Hill and Preston 2015). A 

number of studies have been conducted in order to measure 

the ecological impacts of climate change compounded with 

destructive human activities, and to predict the response of 

species to different drivers of change (e.g. Dillon et al. 2010; 

Gilman et al. 2010; Pereira et al. 2010; Salamin et al. 2010; 
Beaumont et al. 2011; Dawson et al. 2011; McMahon et al. 

2011; Bellard et al. 2012; Belgacem and Louhaichi 2013). 

Impacts of climate change in the early past had already been 

seen, for instance, during the period between 1983 and 2012, 

which was considered as the warmest 30-year period in the 

last 800 years (IPCC 2014), many shifts in the distribution 

and abundances of species occurred (Camillie and Gary 

2003; Root et al. 2003). Moreover, it also has been estimated 

that approximately 20% of all of the world's plant species 

are on the verge of extinction (Brummitt and Bachman 

2010), and Thomas et al. (2004) in their report stated that 
about 15-37% of species in their sample of regions and taxa 

will extinct caused by mid-range climate warming scenarios 

by the year 2050. 

In the last few decades, attention toward understanding 

the potential effect of climate changes on the sustainability 

of species leads to a marked increase of interest in the use of 

Ecological Nice Modeling (ENM) (Merow et al. 2013; 

Fourcade et al. 2014). ENM, also known as Species 

Distribution Modeling (SDM), was developed in the mid-

1980 (Booth et al. 2014), comprehensively involving the 

utilization of statistic, ecology, Geographic Information 

System (GIS), and even Remote Sensing (RS) to develop 
estimation of suitability niche for species across predefined 

landscapes (Franklin and Miller 2009), while also can be 

extrapolated through different space and time (Guissan and 

Thuiller 2005; Elith and Leathwick 2009; Franklind and 

Miller 2009).  

Such modeling can be conducted using a variety of 

methods including heuristic models (e.g. BIOCLIM—

Beaumont and Hughes 2002), combinatorial optimization 

(e.g. GARP-Fitzpatrick et al. 2007), statistical models (e.g. 

GAMs-Jensen et al. 2008), and machine learning (e.g. 

ANN— Ostendorf et al. 2001, Berry et al. 2002, Harrison et 
al. 2006; MaxEnt —Phillips et al. 2006) (Sinclair et al. 

2010). Each of these approaches, indeed, has its own 

advantages and disadvantages. Nevertheless, one of the most 

growing approaches of ENM is Maximum Entropy 

(MaxEnt) algorithms (Belgacem and Louhaichi 2013). 
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MaxEnt modeling has a great potential for identifying the 

distribution and habitat selection of wildlife given its 

reliance on only presence locations and has shown higher 

predictive accuracy than many other methods (Phillips et al. 

2006; Baldwin 2009; Franklin and Miller 2009; Elith and 

Frankling 2013; Peterson et al. 2011; Remya et al. 2015). 

Being a general-purpose machine learning method, MaxEnt 

offers a simple and precise mathematical formulation to 

characterize the probability of distribution across user-

defined landscape (Phillips et al. 2006; Merow et al. 2013). 
Furthermore, its ability extends to utilize different 

environmental scenarios to estimate the changes of 

probability of occurrence of species (Beaumont et al. 2007), 

therefore, allowing user to evaluate the impact of climate 

changes on the probability distribution of species (e.g. 

Rondini et al. 2006; Botkin et al. 2007; Randin et al. 2008; 

Engler and Guisan 2009; Garavito 2015; Setyawan et al. 

2017). 

Since high-altitude plants are expected to shift to higher 

altitude than currently occupied (Grabherr et al. 1994; 

Nilsson and Pitt 1991), the utilization of ENM along with 
relevant approaches to model the effect of climate changes 

on high-altitude Selaginella in Java and its altitudinal shifts 

that may occur is pivotal importance as preliminary 

information on how changes on climate may affect these 

species. The changes in climate condition in the past has 

already impacted habitat of Selaginella, as a part of plant 

communities, in several places (e.g. Boettger 2009; Cao et 

al. 2010; Bezrukova et al. 2012), it will likely affect the 

distribution of this genera under future climate condition in 

Java Island as well. This study aimed to investigate the shift 

in suitable habitat of four species of high-altitude Selaginella 
spp. (Selaginella involvens, S. opaca, S. ornata, and S. 

remotifolia) in Java under current and future climate 

conditions predicted by several representative greenhouse 

gas concentration pathways. 

MATERIALS AND METHODS 

Study area 

This study was conducted to investigate the shift of 

predicted suitable habitat for high-altitude Selaginella in 

Java Island, Indonesia. All of the locality points were 

collected in the mountainous areas of Java. Records points 

were selected carefully to represents the geographical 

distribution of high-altitude Selaginella spp. (Selaginella 

involvens, S. opaca, S. ornata, and S. remotifolia) (Figure 1).  

Procedures 
Locality data 

Presence data of Selaginella involvens, S. opaca, S. 

ornata, and S. remotifolia were obtained during our field 

survey across the island. To ensure the high-confidence level 

of species identification, all of the specimens obtained were 

identified using several references on Selaginella of the 

Malay Archipelago and the adjacent regions, both early 

(Alston 1934, 1935a,b, 1937, 1940) and latest literature 

(Wong 1982, 2010; Tsai and Shieh 1994; Li and Tan 2005; 

Chang et al. 2012; Zhang et al. 2013) as well as our 

precedent publications (e.g., Setyawan 2012; Setyawan et al. 
2012, 2013, 2015a,b,c; Setyawan and Sugiyarto 2015). We 

tried to minimize bias in sampling intensity (Elith et al. 

2006; Yackulic et al. 2013) during the data collection by 

covering as wide areas as possible while also attempting to 

cover all of the possible climatic and micro-climatic 

variability of Java Island. From this work, we were able to 

collect in total of 1330 occurrence points of those four high-

altitude Selaginella species, which were found distributed in 

highland areas of western, central, and eastern parts of the 

island. None coordinate error-correction was conducted for 

these data as we ensured that the level telemetry error on 
modern GPS used in this study (normally between 0.01 km 

and 0.05 km), which is smaller than the resolution of 

predictor variables, has little effect on the accuracy of 

models (Montgomery et al. 2011).  

 

 

 

 
 

Figure 1. Map of point occurrence of selaginellas (Selaginella spp.) in Java Island, Indonesia used in this study. (Basemap source: Google 

Terrain Layer) 
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Additionally, we retrieved 965 occurrence points for all 

of those species in Java Island from the Global Biodiversity 

Information Facility database (http: //www.gbif.orga,b,c,d). 

We carefully verified all of the occurrence points acquired 

from the GBIF, and the errors that may occur were corrected 

using Google Earth software (Google Earth Pro 2017). Data 

records with lack of information on latitudinal and 

longitudinal coordinates were geo-referenced using 

Biogeomancer Workbench (http: 

//www.biogeomancer.org), and guided by locality 
descriptions on each datum (Guralnick 2006). Data records 

that contain neither clear nor specific locality description 

and cannot be geo-referenced were omitted. Afterward, 391 

locality points from this database were combined with the 

occurrence points collected from the field survey (1330 

locality points) and then were filtered using spatial filtering 

technique to reduce the effect of sampling bias. In total, 

1,721 occurrence points were used in this modeling. 

The availability of global biodiversity database and 

environmental datasets has induced the increasing number 

of regional to continental-wide SDM studies (Hijmans et al. 
2005; Kozak et al. 2008). However, strong geographic 

biases are often exhibited in occurrence data derived from 

collection of records and/or opportunistic observation 

(Stolar and Nielsen 2015). Therefore, sampling bias 

correction is highly important and advised strongly to be 

conducted to minimize the influence of sampling bias on 

modeling prediction ability and later interpretation 

(Fourcade et al. 2013; Kramer-schadt et al. 2013; Fourcade 

et al. 2014). Fourcade et al. (2014) in their study proposed 

five sampling bias correction methods which were carefully 

designed to minimize the effect of four types of sampling 
biases that may occur within the occurrence points. 

Subsequently, we identified the type of sampling data biases 

contained in our presence data and then conducted two out 

of those five proposed sampling bias correction methods. 

The first was Spatial filtering, which was conducted by 

creating a grid of 2x2 km cell size and randomly select only 

one point of occurrence per grid cell. The size of the grid cell 

is not the representation of approximate species' dispersal 

capability, but rather as a careful modification of 10-km 

radius rule of spatial filtering proposed by Kramer-Schadt et 

al. (2013) and Boria et al. (2014). QuantumGIS software ver. 

3.0.0 (QGIS Development Team 2018) was used in the grid 
creation and random points selection processes. The second 

method was Bias file utilization; bias file is a probability 

surface that represents the intensity of sampling effort across 

the area of study and gives a gradual weight to random 

background data used for modeling (Fourcade et al. 2014). 

Creating an ideal bias file requires the actual sampling 

intensity data across the study area. Even though it can be 

roughly estimated by the aggregation of occurrences from 

closely related species (Phillips et al. 2009), such datum is 

very limited in availability and hard to generate. In 

consequence, we created bias grids by deriving a Gaussian 
kernel density map of the occurrence locations using 

SDMToolbox of ArcGIS, and then rescaled it from 1 to 20 

(Fourcade et al. 2014). Bias file was later used by fed it into 

MaxEnt software during modeling process through setting 

options (Dudik et al. 2005; Elith et al. 2010; Phillips et al. 

2017). 

Environmental and climate data 

The model in this study was built using environmental 

and bioclimatic variables which were selected based on 

earlier screenings of related variables considered as the main 

factors affecting the distribution of species. We first 

collected 19 bioclimatic and three environmental variables 

which were expected to have direct effect on plant growth 

and survival, based on preceding studies (e.g. Soria-auza 
2009; Hu et al. 2015; Mod et al. 2016; Setyawan et al. 2017; 

Velazco et al. 2017). The bioclimatic layers ver 2.0 (Fick 

and Hijmans 2017) plus altitude layer were acquired from 

WorldClim Bioclimatic datasets website 

(www.worldclim.org). Bioclimatic layers were produced by 

interpolating the average monthly climate data from 

between 9,000 and 60,000 weather stations at approximately 

1 km2 (30 arc-second) spatial resolution (Fick and Hijmans 

2017). Soil types and geological features of Java Island were 

collected from freely available Indonesian Geospatial 

Information Agency's (Indonesian: Badan Informasi 
Geospasial, abbreviation: BIG) website. These datasets were 

then pre-processed in advance through several processes 

including image cutting, resampling of data in a geographic 

coordinate system of WGS48 at a resolution of 1 km2 

(0.008333 decimal degree), and file format converting into 

ASCII format. All of these processes were performed using 

QuantumGIS software ver 3.0.0.  

Certainly, issues of redundancy and multi-collinearity 

will raise as a consequence of high inter-dependency 

between some of the bioclimatic variables (Bedia et al. 

2013). Although neglecting these issues will not affect the 
predictive quality of model greatly (Elith et al. 2011), it 

does, however, negatively affects model interpretability, 

limit any inference of the contribution of any correlated 

variables, and also hampering the ability of the model for 

extrapolation (Brauner and Shacham 1998; Van Gils et al. 

2012, 2014). Therefore, in order to avoid these effects, we 

omitted the bioclimatic variables yielding correlation values 

above 0.95 (Spearman's rho coefficient) in the pairwise 

cross-correlation matrix of each dataset (intra-dataset 

correlations) (Bedia et al. 2013). We used SDM toolbox ver. 

2.0 (Brown 2014) in ArcGIS ver. 10.3 to perform calculation 

and automatically removed each one of the two correlated 
variables. Finally, the remaining twelve variables (i.e. bio_1, 

bio_2, bio_3, bio_4, bio_12, bio_13, bio_15, bio_18, and 

bio_19) along with three environmental variables (i.e. 

altitude, soil type, geological features) were then compiled 

to be used as predictor variables in this study (Table 1). 

Future climate projections 

We used the future climate scenarios of the WorldClim 

datasets projected with the Earth System configuration of the 

Hadley Global Environment Model-2 Carbon Cycle 

(HadGEM2-CC) which were developed by the Hadley 

Center, United Kingdom (Collins et al. 2011). HadGEM2-
CC was produced by modeling the physical climate along 

with the earth system components and couplings.  
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Table 1. Climate and environmental variables used to build the 
models 

 

Code Name Unit 

Alt Altitude m asl 
bio_1 Annual Mean Temperature ºC×10 
bio_2 Mean Diurnal Range ºC×10 
bio_3 Ishotermality ×100 

bio_4 Temperature Seasonality ×100 
bio_12 Annual Precipitation mm 
bio_13 Precipitation of Wettest Month mm 
bio_15 Precipitation Seasonality  mm 
bio_18 Precipitation of Warmest Quarter mm 
bio_19 Precipitation of Coldest Quarter mm 
javasoil Soil type  
javageologi  Geology features  

 
 
 

Key features of targeted physical performance are El 

Nino Southern Oscillation (ENSO) and land-surface 

temperature biases (Koo et al. 2015). Therefore, the physical 

climate in the HadGEM2-CC family can sustain a realistic 
vegetation distribution (Collins et al. 2008). This system 

model has been used to perform all the CMIP5 (Coupled 

Model Inter-comparison Project Phase 5) centennial 

experiments including ensembles of simulations of the RCPs 

(Shrestha and Bawa 2014). We selected four RCP 

(Representative Carbon pathways), which represents the 

future greenhouse gas (GHG) emission trajectories, namely 

RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 in three different 

periods of time (2030, 2050, and 2080). RCP 2.6, the most 

optimistic projection, projected that global GHG emission 

(measured in CO2-equivalents) will increase slowly to reach 

its peak at 3.1 W/m2 in between 2010-2020, with the 
emissions declining significantly thereafter to 2.6 W/m2 by 

the year 2100 (Van Vuuren et al. 2007; Moss et al. 2010). 

Emissions in RCP 4.5 is assumed to be stabilized at 4.5 

W/m2 by the year 2100 due to the variety of strategies and 

technologies implemented to reduce GHG emissions level 

(Clarke et al. 2007). Likewise, the emissions in RCP 6.0 is 

projected to reach its peak around 2080 and stabilizes by the 

year 2100 at 6.0 W/m2. In RCP 8.5, emissions continue to 

rise throughout the 21st century, reaching around 8.5 W/m2 

as the highest level by the end of the century (Riahi et al. 

2011). 
It has been known that these climate scenarios contain 

systematic error (biases) due to the limited spatial resolution, 

simplified physic and thermodynamic processes, and 

numerical schemes or incomplete knowledge of climate 

system processes (Ramirez-Villegas et al. 2013). Therefore, 

we implemented bias correction data provided by CGIAR-

CCAFS under three different calibration approaches: (i) 

Bias Correction, this approach revise the projected raw 

GCM output using the differences in the mean and 

variability between observations and GCM, in a reference 

period (Hawkins et al. 2013); (ii) Change Factor (CF), in this 

approach the raw GCM outputs current values are subtracted 
from the future simulated values, resulting in "climate 

anomalies" which are then added to the present-day 

observational dataset (Tabor and Williams 2010); (iii) 

Quantile Mapping (QM), this approach removes the 

systematic bias in the GCM simulations and account for the 

biases in all statistical moments, however, like all statistical 

downscaling approaches, it is assumed that biases relative to 

historical observations will be constant in the projection 

period (Thrasher et al. 2012). 

Model development 

In total, 1,721 occurrence points and twelve variables 

were then used to build the models using freely available 

MaxEnt software ver. 3.4.1 (Phillips et al. 2017). MaxEnt 

was chosen as it has been proved to give better results than 
other modeling algorithms with the basis of presence-only 

data (PO) or presence-background (PB) along with 

environmental variables (Philips and Dudik 2008; Summers 

et al. 2012). Further consideration to use MaxEnt in this 

study was because the aim of this study is in accordance with 

the good performance of MaxEnt to model the effect of 

climate change on the potential shifting range of species 

(e.g. Kou et al. 2011; Johnston et al. 2012; Duan et al. 2016). 

Furthermore, MaxEnt also offers a wide variety of setting 

options which will be different in each case and occasionally 

requires species-specific settings (Merow et al. 2013). 
Hence, we tried to ensure that the setting options were 

adjusted to our specific study aims, hypothesis, and our 

intended assumptions (Peterson et al. 2011; Araujo and 

Peterson 2012; Merow et al. 2013). The adjusted parameters 

were as follow: (i) Convergence threshold was set to 1×10-

6. (ii) The number of replicated runs was set to ten times (the 

averaged value is the one used as the result) using "cross-

validate" as the replicated run type. Using "cross-validate" 

means to split the data ten times (10% per partition), train 

the model ten times on 90% of the data, and test it each time 

on the 10% partition alternately. (iii) Maximum iterations 
were set to 5,000 for each run to allow the model to have 

adequate time for converging, Furthermore, to avoid over-

fitting and assuming that the species respond directly to the 

predictors (vs to correlated factors), we decided to "smooth" 

the model by choosing only hinge features (Elith et al. 2010). 

Considering that we used a large collection of occurrence 

from diverse regions to be projected to different climate 

condition, the default "regularization multiplier" value was 

doubled to accommodate aforementioned type of data and 

aim of study (Elith et al. 2006; Merow et al. 2013; 

Radosavljevic and Anderson 2013). We used the 

"projection" feature to extrapolate the model into different 
climate projections in order to predict the impact of 

projected future climate conditions to the redistribution of 

potentially suitable habitat for both species (Van der Wall et 

al. 2009). 

Model evaluation 

Model performance evaluation was conducted using the 

Area Under the Receiver Operating Characteristic (ROC) 

Curve (AUC) produced by the MaxEnt itself and True Skill 

Statistic (TSS) which was calculated using sensitivity and 

specificity values. AUC value ranges from 0 (lowest) to 1 

(highest), whereby value between 0 and 0.5 represents that 
the model is no better than just random prediction, value 

below 0.7 is low, value between 0.7 and 0.9 is good, and 

value above 0.9 indicates high discrimination or indicates 
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that the model is far better than random prediction (Araujo 

et al. 2005). Despite having been proved that AUC does not 

necessarily provide useful information to assess and/or to 

evaluate the model performance (by Lobo et al. 2008; Bahn 

and McGill 2013; and Aguirre-Gutiérrez et al. 2013), we 

reported it to illustrate that the models in this study perform 

better than any model with a set of random predictors. 

Additionally, we calculated the True Skill Statistic (TSS) 

(also known as the Youden index), as an additional 

measurement to evaluate the performance of the model 
(Youden 1950; Allouche et al. 2006). Another measurement 

of model evaluation was demonstrated by several studies 

using Kappa statistic (e.g. Duan et al. 2014; Ali and Hossein 

2016; Bagheri et al. 2017). However, regarding the use of 

Kappa value, its value is highly correlated to prevalence of 

the locality points and the size of the study area (Lobo et al. 

2008; Fourcade et al. 2017), hence, would generate some 

sort of bias or misunderstanding. Moreover, due to the fact 

that both AUC and Kappa are weighting omission and 

commission errors equally (Allouche et al. 2006; Lobo et al. 

2008; Jimenez-Valverde 2012; 2014; Fourcade et al. 2017), 
Kappa, just like AUC, is more reliable if it is applied in PA 

(Presence-Absence) model. Consequently, we assume that 

the utilization of TSS in this study, wherein using presence-

only data, is more suitable than the use of Kappa statistics. 

Data analysis 

By using the “logistic” output format, we retrieved 

prediction maps which depict the distribution of potential 

ecological niche of species across the study area and the 

changes of its distribution under future climate projections 

(Philips and Dudik 2008) which were linearly scaled 

between 0 (lowest) to 1 (highest). All of the maps produced 
by MaxEnt were in ASCII file format. We imported the 

ASCII file containing the probability of habitat suitability 

into QuantumGIS software ver. 3.0.0 and reclassified it into 

three classes: low suitability (25-50 % probability of 

occurrence), medium suitability, (50-75% probability of 

occurrence), and high suitability (>75 % probability of 

occurrence). The reclassification was conducted to allow us 

to compare the changes in every class over time and space 

by comparing the total area of predicted habitat under 

current and projected future climate conditions by counting 

the number of "presence" grid cells and multiplied it by their 

spatial resolution. The lowest suitability value was acquired 
using selected threshold rule. Indeed, in the process of 

selecting threshold rule, one should avoid arbitrariness and 

should incorporate consideration of relative importance 

difference between commission error and omission error 

(Phillips and Dudik 2008; Nenzen and Araujo 2011; Bean et 

al. 2012; Syfert et al. 2013). By considering that reducing 

omission error is more important determinant than reducing 

commission error, Norris (2014) proposed "minimum 

training presence" or "fixed cumulative value 1" as the most 

appropriate rule. However, Liu et al. (2016) stated that those 

proposed threshold rule may be more convenient for 
modeling rare species, but in the case of more common 

species, reducing commission error should be considered 

more than lowering the omission error. Therefore, following 

Liu et al. (2016), we selected "maximum training sensitivity 

plus specificity" threshold rule to be used in this study. 

Additionally, we also retrieved the variables' relative 

contribution to the models and quantify the degree to each 

variable affect the prediction. We also retrieved alternate 

estimation of variable importance by running the jackknife 

test. Jackknife test will shows which variable has the most 

information that is not present in the other variables and 

which variable has the most useful information by itself 

(Phillips et al. 2009). A separate analysis, which focused on 

observing the potential change of altitudinal distribution of 
high-altitude Selaginella, was conducted by comparing the 

mean values of the predicted areas under current and future 

climate scenarios conditions using independent sample T-

test (Shrestha and Bawa 2014).  

RESULTS AND DISCUSSION 

Results 

Model evaluation and variables importance  

According to the calculations of the relative 

contributions of environmental variables to the MaxEnt 

models under the current scenario, there are three variables 

which are considered have the most contribution to the 
model, i.e. Altitude (alt), Annual mean temperature (bio_1), 

and Annual precipitation (bio)_12) (Table 2). Altitude made 

the largest contribution with 53.8%, followed by annual 

mean temperature and annual precipitation with 13.2% and 

7.3%, respectively, making the cumulative contributions of 

these factors of 74.3%. Thus, suggesting that the 

distributions of high-altitude Selaginella are strongly 

influenced by these three variables. Similarly, the results of 

jackknife test suggested that Altitude and Annual mean 

temperature give the highest gain when used in isolation 

(Figure 2), which means that these variables appear to have 
the most useful information by itself and, therefore, provide 

the highest contribution to the model (Phillips et al. 2008). 

Furthermore, The environmental variable that decreases the 

gain the most when it is omitted is mean diurnal range 

(bio_2) which therefore appears to have the most 

information that is not available in the other variables 

(Phillips et al. 2008).  
 
Table 2. Percentages of variables contribution to the model 
 

Environmental variables 
Contribution 

(%) 

Altitude (Alt) 53.8 
Annual Mean Temperature (ºC *10) (bio_1) 13.2 
Mean Diurnal Range (Mean of monthly 
(max temp-min temp)) (bio_2) 

5.7 

Isothermality (bio_3) 3.7 
Temperature Seasonality (standard 
deviation *100) (bio_4) 

2.2 

Annual Precipitation (bio_12) 7.3 
Precipitation of Wettest Month (bio_13) 0.4 
Precipitation Seasonality (bio_15) 3 
Precipitation of Warmest Quarter (bio_18) 1.2 
Precipitation of Coldest Quarter (bio_19) 0.8 
Soil type (javasoil) 2.8 
Geology features (javageologi) 5.9 
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Figure 2. Results of jackknife test of relative importance of predictor variables for high-altitude Selaginella 
 
 

Response curve produced by MaxEnt illustrates how 

each variable affects the prediction by showing how the 

logistic prediction changes as each variable varied (Phillips 

et al. 2006). As has been stated before, altitude is the most 

important determinant in the model, with the response curve 

indicates positive correlation between altitude level and 

probability of occurrence. The probability of occurrence 

gradually increases to above 50% at the altitude of about 800 

m asl and then reaches its peak at around 2,300 m asl before 
a slight decrease at higher altitude, but still at high 

probability (Figure 3.A). Response curve of the second most 

important variable (Annual mean temperature) depicts that 

the probability of presence is high in the area that has annual 

mean temperature of between 15 ºC and 22 ºC (Figure 3.B). 

Areas which have either lower or higher mean temperature 

per annum than the aforementioned range have lower 

probabilities. Response curve of annual precipitation rate 

(bio_12) also projects positive correlation between 

probability of presence and annual precipitation rate. The 

best rate of annual precipitation for the presence of species 

is predicted at an above 3000 mm year-1 (Figure 3.C).  

The performance of MaxEnt model in term of predictive 

accuracy and statistical significance are often investigated 

by evaluating the AUC value and performing additional 

statistical calculation (Peterson et al. 2011). The AUC value 

obtained from the model's result in this study was 0.860, 

which indicate that the model has a good discrimination 

ability and the model performs better than any model with a 

set of random predictors (Lobo et al. 2008; Peterson et al. 

2008; Jimenez-Valverde 2012, 2014; Fourcade et al. 2017). 
Additional evaluation of the model was conducted using 

True Skill Statistic (TSS) by calculating the summary of 

sensitivity and specificity minus one. The data acquired to 

calculate the value were obtained from background 

prediction and sample prediction file from the MaxEnt 

result. The retrieved TSS value of 0.86 gives the impression 

that the model built in this study have a good degree of 

agreement, good predictive capacity, and also can be 

interpreted as evidence for real ecological phenomenon, 

based on climatic and environmental variables used 

(Allouche et al. 2006; Li and Guo 2013).  

 
 

   
2.A 2.B 2.C 

 
Figure 3. Response curves from MaxEnt of the most important variables to the species distribution model: A. Response curve for Altitude; 
B. Annual mean temperature (in ºC*10); C. Annual Precipitation (in mm year-1). The curves show the mean response of the 10 replicate 
MaxEnt runs (red) and the mean +/-one standard deviation (blue, two shades for categorical variables) 
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Predicted suitable habitat under current climate  

Projected distribution of predicted suitable habitat for 

high-altitude Selaginella under current climate condition is 

shown in Figure 4. Subsequent to categorized the output into 

two categories (suitable vs unsuitable) using the 

aforementioned threshold rule (see Methods), the predicted 

suitable habitat were then reclassified into three classes: low 

suitability (25-50% probability of occurrence), medium 

suitability, (50-75% probability of occurrence), and high 

suitability (>75% probability of occurrence) to allow us to 

compare the changes in every class of probability under 
future climate projection. According to the result, about 

37.32% (48,974 km2) area of Java Island was predicted to be 

suitable for high-altitude Selaginella. The number consisted 

of 17.73% (23,272 km2), 12.37% (16,239 km2), and 7.21% 

(9,463 km2) of low, medium, and high probability areas, 

respectively (Figure 7). 

The predicted suitable habitats were distributed across 

the mountainous areas of Java Island, from western to 

eastern part of the island. The high probability of suitable 

areas was mainly concentrated in Central and East Java, 

whereas West Java and Banten province dominated by low 

and medium probability areas. Altitudinally, the low 

probability areas were mainly distributed at the altitude of 

between 500 and 1291 m asl, medium probability at between 
1292 and 1734 m asl, and high probability at above 1734 m 

asl (Figure 5).  

 

 

 
 
Figure 4. Predicted distribution of suitable habitat for high-altitude Selaginella under current climate condition (Base map: Google 
Physical Maps 2014). 

 

 
 
 

Figure 5. Predicted altitudinal distribution of high-altitude Selaginella suitable habitat under current climate condition 
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Predicted suitable habitat under future climate scenarios  

We used the "projection" feature in MaxEnt along with 

four future climate scenarios (RCP) in three different time 

periods to model the predicted suitable habitat of the four 

high-altitude Selaginella in the future. The results of the 

predicted suitable habitat under future climate were then 

analyzed and compared with current prediction (Figure 6). 

Under the RCP 2.6 climate scenario, the high probability 

area will likely decrease by almost 35% in the year 2080, 

whereas the medium and low probability areas will reduce 

by about 37.2% and 18.3%, respectively. Likewise, under 
the RCP 4.5 and 6.0 scenarios (medium GHG emission 

scenario), there will be a gradual decrease of suitable areas 

which are approximately greater than the decrease of areas 

under the RCP 2.6 scenario. Under these medium scenarios, 

in 2080, about 18.1%, 37.5%, and 25.1% of low, medium, 

and high probability areas will be lost respectively. The RCP 

8.5 scenario is predicted to have the most negative effect on 

the distribution of suitable habitat of high-altitude 

Selaginella. Under this climate projection, about 21.2% of 

low probability areas will be lost across the given periods of 

time, whereas medium probability areas predicted to 

decrease by around 38.1% during the same time periods. 

High probability areas are expected to decrease by about 
33.4% in the year 2080 (Figure 7). 

 

 

 
 
Figure 6. Predicted distribution of climatically suitable habitat under future climate projections  

 

 
 

 
 
Figure 7. Estimated areas of the predicted suitable habitat under current and future climate projections  
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The projected climate changes are also predicted to 

affect the altitudinal distribution of high-altitude 

Selaginella’s suitable habitat (Figure 8, Table 3). The 

models show that despite there will be upward shifts in 

average distribution of suitable habitat under the RCP2.6, 

RCP 4.5, and RCP 6.0 in 2030, the shifts, however, are still 

statistically insignificant (p = 0.01), which mean that the 

upward shifts in this year and under aforementioned 

projections are small and still no noteworthy. The upward 
shift in the year 2030 is statistically significant only under 

RCP 8.5 climate projection, wherein the mean altitude was 

predicted to increase by 51.1 m from current’s mean altitude. 

Further upward shifts on the distribution of high-altitude 

Selaginella’s suitable habitat are predicted in 2050 and 2080 

under all of RCP projections. In the year 2080 and under 

RCP 8.5 climate projection, the altitudinal mean will shift 

by almost 150 m from current average altitude. The 

maximum altitude of predicted suitable habitat is also 

predicted to increase to reach almost 3500 m asl in the year 

2080 (RCP 8.5), since the effect of climate changes not only 
affecting the average altitude, but also affecting the 

minimum and maximum altitudinal distribution of predicted 

suitable habitat (Figure 8). All of these shifts beyond the 

RCP 8.5 (2030) were calculated to be statistically significant 

(Table 3).  

Discussion 

Rapid changes on the environmental condition caused by 

climate changes in the past decades have induced ecologists 

to increase their focus on the potential response of plant 

communities to climate change (Hamrick 2004). Several 

studies (e.g. Parmesan et al. 2003; Colwell et al. 2008; 

Lenoil et al. 2008; Doak and Morris 2010; Feelay 2012) 

have reported that range shrinkage and extinction of 

organisms are examples of ecological impacts of climate 

changes. Java Island, which is the most densely populated 

island in Indonesia, will likely to suffer more from the 

worsening human-induced climate changes. In this study, 

we have examined how climatic factors affect climatic 

habitat suitability and geographical range as well as 
altitudinal distribution of four high-altitude Selaginella 

species.  
 
 

Table 3. Independent T-test of average elevation shift of 
Selaginella habitat under current condition and future climate 
scenarios. 
 

Climate scenarios Year Mean SD P-value 

Current condition - 1530.1 633.9  
RCP 2.6 2030 1550 601.8 0.29 

RCP 4.5 2030 1559 604.3 0.26 
RCP 6.0 2030 1561.7 608.8 0.11 
RCP 8.5  2030 1581.1 615.2 0.011 
RCP 2.6 2050 1589.2 616.4 0.001 
RCP 4.5 2050 1592.1 627.2 3.3×10-4 
RCP 6.0 2050 1594.8 604.2 3 ×10-4 
RCP 8.5  2050 1601.8 599.9 1.2×10-4 
RCP 2.6 2080 1608.1 619.9 1×10-4 

RCP 4.5 2080 1627.1 585.1 1.12×10-6 
RCP 6.0 2080 1630.7 672.8 1.1×10-6 
RCP 8.5  2080 1673.5 629.7 1×10-7 

 

 
 

 
 
Figure 8. Predicted changes in the altitudinal ranges of suitable habitat under future climate projections. The box plots present median, 
lower quartile, upper quartile, maximum and minimum observations. Altitude is measured in m asl. (meter above sea level) 
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The results of the model showed that altitude and annual 

mean temperature were two of the most dominant driving 

factors of habitat suitability for high-altitude Selaginella. 

The model showed that there is a positive correlation 

between altitude and the habitat range of high-altitude 

Selaginella and there is a negative correlation between 

annual mean temperature and such range. Geographical 

variables, such as elevation, are often related to local 

precipitation and temperature features (Austin 2002; Körner 

2007) and have been considered important determinants of 
species distribution in mountainous habitats (Körner 2004, 

2007; Oluwatobi and Thompson 2015). Temperature, as a 

regulator of evapotranspiration level, become highly 

important factor in order to maintain the level of humidity in 

the region. Water availability, which is measured in annual 

precipitation (Bio_12), is also another determining factor of 

habitat suitability for high-altitude Selaginella. The positive 

correlation between the annual precipitation and the 

probability presence of the species (Figure 2.C), suggests 

that the four species of high-altitude Selaginella require a 

high level of humidity. Humidity is correlated with many 
environmental factors that influence the biochemical and 

physiological processes of plants (e.g. Platt et al. 1993; 

Wang et al. 1998; Thuiller et al. 2008; Timothy et al. 2009; 

Bowman 2011; Ruszala et al. 2011). Therefore, the 

combination of those three factors is expected to be the main 

role in shaping the ecological adaptation and the distribution 

pattern of high-altitude Selaginella.  

A set of future climate scenarios, which was projected 

under four GHG emission trajectories (the RCP), will likely 

affect the sustainability of high-altitude Selaginella species 

negatively. The models predicted the losses of suitable 
habitat will occur gradually across the area of study during 

the given periods of time. Under the lowest GHG emission 

projection (RCP 2.6) wherein radiative forcing reaches 2.6 

W/m2 by the year 2100 (Meinshausen et al. 2011; IPCC 

2014), the annual mean temperature is projected to rise by 

up to 1.05 ºC which is predicted to occur mostly in lowland 

areas (Figure 9.A). Likewise, under the worst scenario 

projection (RCP 8.5; radiative forcing 8.5 W/m2 by the year 

2100), the magnitude of temperature is predicted to increase 

by about 2.71 ºC (Figure 9.B). Unlike in the case of 

temperature, the changes in precipitation would not be the 

same across the Java Island areas. There will be areas where 

the amount of precipitation shows a decreasing trend while 

in other areas there is an increasing trend (Figures 9.C and 

9.D). This projection of changes in annual precipitation is in 

accordance with a study conducted by Siswanto and Supari 

(2015), which found that during the last 30 years, changes in 

total annual rainfall across the Java Island vary from-170 to 
+82 mm/decade. These changes in climate conditions in the 

future have been predicted to lead to decreasing trends of 

high-altitude Selaginella’s habitat at a rate of between 2.2% 

and 4.7% per decade. The model results demonstrated that 

altitude, annual mean temperature, and annual precipitation as 

three of the most dominant driving factors of habitat suitability 

of four species of high-altitude Selaginella, confirming the 

fact that changes in these factors have negative impacts on 

the sustainability of the species in the future.  

Temperature, as the second most dominant factor, 

allegedly affects both the photosynthetic capability and 
preservation of photosynthetic apparatus of Selaginella 

species (Jagels 1970, Eickmeier 1985). The negative 

correlation between temperature and probability of high-

altitude Selaginella’s presence, depict the possible negative 

effects of warmer temperature. Soni et al. (2012) in their 

study stated that S. bryopteris shows a very poor mechanism 

for its stomatal regulation in response to high temperature, 

which also affects its photosynthesis capability. Further-

more, regarding the effect of changes in precipitation level, 

studies conducted by Deeba et al. (2009) and Pandey et al. 

(2010) demonstrated drastic inhibition in net photosynthesis 
and maximal photochemical efficiency when S. bryopteris 

induced with dehydration stress. Desiccation in this Selaginella 

species can also cause enhanced production of reactive 

oxygen species (ROS) and increased lipid peroxidation. In 

consequence, the increasing level of annual mean 

temperature and the decreasing level of annual precipitation 

are the most important compounding factors of the sustainability 

of high-altitude Selaginella’s habitat in the future.  
 
 

 
Figure 9. Changes in annual mean temperature (bio_1) under RCP 2.6 scenario (A) and RCP 8.5 scenario (B); changes in annual 
precipitation (bio_12) under RCP 2.6 scenario (C) and RCP 8.5 scenario (D). Colors represent the difference between present climate and 

future climate (2080-2100). Images were produced by subtracting the value of the future climate variable from the value of the current 
climate variable on a cell by cell basis. 
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Several studies have reported that the compounding 

effects of climate change may threaten the survival of many 

plant species (e.g. Dillon et al. 2010; Gilman et al. 2010; 

Pereira et al. 2010; Salamin et al. 2010; Beaumont et al. 

2011; Dawson et al. 2011; McMahon et al. 2011; Alice et al. 

2012; Bellard et al. 2012; Belgacem and Louhaichi 2013). 

In response to changes in the environmental condition, 

plants may develop micro-evolutionary mechanisms to 

adapt to new conditions, such as reducing photosynthetic 
rates, growth rates, mineral absorption and tissue 

regeneration, as well as and increasing concentrations of 

secondary metabolites (Jochum et al. 2007; Wiens et al. 

2009). Plants may also respond by contracting, expanding, 

or even fragmenting their range of dispersal to follow the 

changing environments (e.g. Philips et al. 2006; Wiens et al. 

2009; Minteer and Collins 2010; Chen et al. 2011; Morueta-

Holme et al. 2015). Furthermore, several studies have also 

reported the early sign of plants migration into higher 

altitude areas induced by changes in climatic condition (e.g. 

Zhang et al. 2001; Parmesan and Yohe 2003; Root et al. 

2003; Leng et al. 2008; Lenoir et al. 2008; Bertrand et al. 
2011; Petitpierre et al. 2016). The modeled altitudinal range 

of suitable habitat for high-altitude Selaginella under future 

climate condition, in this study, also provide similar signs of 

range shifting into higher altitude. The shifts occur as the 

lower land areas are predicted to become drier and warmer, 

reducing the suitability of habitat at such lowlands and 

increasing the suitability of wetter and cooler areas at higher 

altitude (Allen and Breshears 1998; Parmesan and Yohe 

2003; Parmesan 2006; Lenoir et al. 2008a,b). However, the 

shifting may not occur evenly as the shifting will also be 

constrained by some limitations, including dispersal ability 
of the spore of Selaginella species, natural or anthropogenic 

barriers, and interaction with other biotic factors (such as 

herbivory animal). Therefore, to build a proper model that 

can closely resemble the real-world phenomenon requires 

enrichment of factors and variables which considered 

directly or indirectly affecting the sustainability of the 

species.  

Despite several measurements have been taken to 

minimize the errors in the model caused by bias on the 

sampling data and to minimize bias on future climate 

projections and species-specific setting options (see 
Method), it is inevitable that overestimation and/or 

underestimation (omission/commission error) may still be 

contained in the results of the model. Such biases can be 

caused by several reasons. First, neither the dispersal rate of 

species nor the demography of meta-population was 

included in the model, as these parameters are currently 

unavailable. Cryptogam species, such as Selaginella, have a 

wide dispersal range, and for this reason, modeling their 

niche is better when absence data is available because it has 

been known that ENM/SDM using true absence data rather 

than pseudo-absence data have a lower rate of 

overprediction (Vaclavik and Meentemeyer 2009). Second, 
the low resolution of environmental variables used in this 

study (1 km2) has not yet capable of representing the unique 

environmental condition that greatly drives the probability 

of the occurrence of species. Third, the predictors used in 

this study did not comprehensively represent all of the 

environmental factors affecting the existence of the species 

(e.g. biotic factor interaction). Fourth, the lack of human-

induced variables, such as land use/land cover changes, 

deforestation, infrastructure development activities, which 

can affect the dispersal and habitat shifting of the species. 

Fifth, the lack of micro-climate variation variables which 

predicted to affect the existence of species in the study area. 

Therefore, it is important to note that, like most of the SDM, 
the "predicted" distribution of suitable habitat does not 

represent the "true" prediction of the distribution of species, 

but rather the prediction of the distribution of "suitable" 

habitat-based only on the variables used in this study. 

Nevertheless, we may treat the results of this model as an 

appropriate representation of how the current climate 

condition shapes the distribution of suitable habitat for high-

altitude Selaginella, and its predicted redistribution under 

the effect of future climate projections.  

Incorporating dispersal rates, meta-population 

demography, and other multiple compounding factors, 

which are expected to have both direct and indirect effect on 
the target species and its associated biota, is desirable to 

build a more ideal model (Morin and Thuiller 2009; Sinclair 

et al. 2010; Ellis 2011). However, such an ideal package of 

data is currently limited or unavailable. Nonetheless, 

refining current climate models and incorporating recent 

development of new climate models provide opportunity to 

build more precise and ideal model. Future attempts of 

modeling ENM/SDM are encouraged to incorporate 

potential human-induced land use/land cover changes, more 

detailed ecological data, data of biotic interactions between 

species in the regional ecosystems, and better sampling of 
presence data that accurately represent the variability of 

ecological niche of species. Despite all of the presented 

limitations, this study provides the baseline of understanding 

the potential effect of climate changes on the distribution of 

predicted suitable habitat for high-altitude Selaginella in 

Java Island. Based on the results, therefore, we may make an 

inference and draw a conclusion that future climate 

conditions will negatively affect the sustainability of high-

altitude Selaginella by reducing the ability of certain habitat 

to support the survival of the species. Moreover, habitat 

shifting to higher altitude areas is also predicted to occur as 
a result of changes in climate conditions.  
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