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Abstract. Chaiyasan P, Mingkwan B, Jantarat S, Suwannapoom C, Cioffi MDB, Liehr T, Talumphai S, Tanomtong A, Supiwong W. 
2021. Classical and molecular cytogenetics of Belontia hasselti (Perciformes: Osphronemidae): Insights into the ZZ/ZW sex 
chromosome system. Biodiversitas 22: 546-554. Karyotype of Java combtail fish, Belontia hasselti, from To Daeng peat swamp forest, 
Narathiwat Province, southern Thailand, was studied for the first time. Mitotic chromosome preparations were prepared directly from 
kidney cells from ten male and ten female fish. Conventional staining, NOR banding, and molecular cytogenetics with fluorescence in 
situ hybridization (FISH) using 5S and 18S rDNAs, as well as microsatellites d(CA)15 and d(CAC)10 as probes were applied. The diploid 

chromosome number (2n) was 48 and a female heterogametic sex chromosome system (ZZ/ZW) is suggested. The fundamental 
numbers (NF) were 48 and 49 in males and females, respectively. The karyotype of males comprised 48 telocentric chromosomes while 
the female ones were composed of one metacentric and 47 telocentric chromosomes. A single Ag-NOR-bearing chromosomal pair was 
identified. The NOR positions were characterized at the interstitial sub-centromeric region of pair 13, which coincided with signals of 
18S rDNA and d(CAC)10 probes. The 5S rDNA signals were located at interstitial sites of the largest telocentric pair. Microsatellite 
d(CA)15 repeats were highly distributed throughout almost all entire chromosomes except for centromeric regions on some chromosome 
pairs, including sex chromosomes. The present study is a novel report for a ZZ/ZW sex chromosome system of this fish family in 
Thailand. 
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INTRODUCTION 

Java combtail fish, Belontia hasselti belongs to the 
family Osphronemidae, subfamily Belontiinae. This 

subfamily is represented only by genus Belontia, and two 

species B. hasselti and B. signata, are native from 

freshwater habitats in Southeast Asia, and Sri Lanka 

(Froese and Pauly 2014). Mostly the species occur in acidic 

freshwater biotopes with little water movement, 

particularly, in ancient forest peat swamps in which the 

water is stained dark-brown by humic acids and other 

chemicals released from decaying organic material 

(Kottelat 2013). In Thailand, B. hasselti is endemic in the 

To Daeng peat swamp forest.  
Cytogenetic studies demonstrated a huge karyotypic 

diversity for the family Osphronemidae. The overall data 

showed that 2n ranges from 16 in Sphaerichthys 

osphromenoides to 48 chromosomes in serval species as 

outlined in Table 1. Variations in karyotypic formula in the 

two species and their sub-populations result from 

differences in chromosome morphology. 

Conventional staining technique has been used to 

determine chromosome number and karyotype 
composition. Structure, number, type, size, and 

morphology of a nucleolar organizer region (NOR) may be 

specific to populations, species, and subspecies. NOR-

staining is frequently used to compare variations, as well as 

to identify and explain specifications. Molecular 

cytogenetic experiments have demonstrated that NORs are 

the chromosomal site of gene coding for 5.8S, 18S, and 

28S rRNA, in humans and several mammalian species. 

NORs can be used as markers for evolutionary 

chromosome studies (Gornung 2013; Gálvez et al. 2018). 

Recently, molecular cytogenetic studies using fluorescence 
in situ hybridization (FISH) for mapping repetitive DNA 

sequences have provided important contributions to the 

characterization of biodiversity and the evolution of 

divergent fish groups (Cioffi et al. 2015). However, 

conventional cytogenetic and FISH techniques to 

investigate the chromosomal distribution of repetitive DNA 

sequences on B. hasselti have not yet been performed. 
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Accordingly, the present study is the first cytogenetic 

report on B. hasselti from Thailand, and is accomplished 

with both classical and molecular cytogenetics. The study 

moves forward our understanding of both the karyotype 

evolution mechanisms and speciation in the genus Belontia, 

and increases the knowledge available for implementation 

of polyploidy manipulation, hybridization, sex control, and 

other potential genetic improvements in the future. 

MATERIALS AND METHODS  

Sample collection 
Ten males and ten females of Belontia hasselti were 

obtained from the To Daeng peat swamp forest, Narathiwat 

Province, Thailand. The fish were transferred to laboratory 

aquaria and kept under standard conditions for seven days 

before experimentations. The procedures followed ethical 

protocols, with anesthesia conducted by keeping samples in 

the freezer before euthanasia, as approved by the 

Institutional Animal Care and Use Committee of Khon 

Kaen University, based on the Ethics of Animal 

Experimentation of the National Research Council of 

Thailand ACUC-KKU-90/60. 

Chromosome preparation, Giemsa’s staining and Ag-

NORs banding technique  

Metaphase chromosomes were directly prepared in vivo 

as following Supiwong et al. (2012a, 2013b, 2015) and 

Kasiroek et al. (2017). Subsequently, chromosomes were 

stained with 20% Giemsa solution and 50 % silver nitrate 

for Ag-NOR banding (Supiwong et al. 2012b; Getlekha et 

al. 2017; Chaiyasan et al. 2018).  

Chromosome checking 

Twenty metaphases of each specimen were selected and 

photographed. The length of the short arm chromosome 
(Ls) and the long arm chromosome (Ll) were measured 

from 20 perfect metaphase plates of each sex, while the 

length of the total arm chromosome (LT) was calculated 

(LT = Ls + Ll). The relative length (RL), the centromeric 

index (CI), and standard deviation (SD) of RL and CI were 

estimated. The CI (q/p + q) between 0.50-0.59, 0.60-0.69, 

0.70-0.89, and 0.90-1.00 are described as metacentric (m), 

submetacentric (sm), acrocentric (a), and telocentric (t) 

chromosomes, respectively. The fundamental number (NF) 

was obtained by assigning a value of 2 to the m, sm and a 

chromosomes and 1 to the t chromosome. All data were 

used in karyotyping and diagramming (Tanomtong et al. 
2014; Chooseangjaew et al. 2017). 

Fluorescence in situ hybridization (FISH) 

FISH was performed on metaphase chromosome 

spreads with specific probes for 5S and 18S rDNAs under 

highly stringent conditions (Rodrigues et al. 2012; 

Maneechot et al. 2016). Both rDNA probes were directly 

labeled with the Nick-translation Labeling Kit (Jena 

Bioscience, Jena, Germany), using the fluorescent labels 

Atto488 (18S rDNA) and Atto550 (5S rDNA), according to 

the manufacturer’s manual (Supiwong et al. 2017).  

The usage of microsatellites d(CA)15, and d(CAC)10 

probes described by Cioffi et al. (2011) was followed with 

slight modifications. Sequences were directly labeled with 

Cy3 at 5´ terminal during synthesis by Sigma (St. Louis, 

MO, USA). FISH was performed on mitotic chromosome 

spreads (Xu et al. 2017) under highly stringent conditions, 

as previously reported (Supiwong et al. 2017). The 

evaluation was carried out on an epifluorescence 

microscope Olympus BX50 (Olympus Corporation, 

Ishikawa, Japan). 

RESULTS AND DISCUSSION 

Diploid chromosome number (2n), fundamental 

number (NF) and karyotype of Belontia hasselti 

The model diploid number of B. hasselti was 2n = 48 

chromosomes for both the sexes. The male karyotype was 

composed of 48 telocentric chromosomes (Figure 1.A-B), 

while females presented 47 telocentric and one large and 

unpaired metacentric chromosome (Figure 1.C-D), 

identified as the W chromosome. In addition to this, the 

female karyotype showed an exclusive telocentric 

chromosome, and the smallest chromosome was identified 
as the Z chromosome (Figure 1). Hence, a ZZ/ZW sex 

chromosomal heteromorphism was identified, with a large 

metacentric W-chromosome, which was similar in size to 

the first pair of karyotype complement (Figure 3). The NF 

were 48 and 49 in males and females, respectively (Figure 

1, Table 1). 

Chromosome marker of Belontia hasselti 

The determination of a chromosome marker for this 

species was firstly obtained by Ag-NOR staining. The 

nucleolar organizer regions (NORs) were mapped to 

interstitial subcentromeric positions of the telocentric 
chromosome pair 13 (Figure 1 E-H). 

Patterns of 5S and 18S rDNAs in Belontia hasselti 

The 5S rDNA sequences were mapped at interstitial 

positions near the centromeres of the telocentric pair 1 (the 

first pair). The 18S rDNA probe showed coincident 

hybridization signals of NOR-carrying chromosomes, at 

the interstitial subcentromeric regions on the telocentric 

chromosome pair 13 (Figure 2.A-B). 

Patterns of microsatellite d(CA)15 and d(CAC)10 repeats 

in Belontia hasselti 

The mapping of microsatellite repeats on the 

chromosomes of B. hasselti showed that d(CA)15 signals 
were observed on all chromosome pairs. These signals 

were distributed throughout the whole chromosomes except 

for centromeric regions of some pairs (pairs 2, 4, 8, 10, 15, 

and sex chromosomes in both sexes) (Figure 2.C-D). In 

turn, microsatellite d(CAC)10 was highly accumulated at the 

interstitial subcentromeric region on chromosome pair 13, 

which corresponds to the NOR position and 18S rDNA 

patterns (Figure 2.E-F). 
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Table 1. Cytogenetics review in the family Osphronemidae 
 

Species 2n NF Karyotype formula Ag-NORs Sex-chromosome Reference 

Belontia hasselti 48 48 48t 2 ZZ, M Present study 

 48 49 1m + 47t 2 ZW, F Present study 

Betta splendens 42 - - - - Arai (2011) 

 42 45-56 12sm+14st/a+16a/t - - Grazyna et al. (2008) 

Colisa chuna 46 66 20m+26st/a - - Grazyna et al. (2008) 

Colisa fasciata 48 48 48a - - Grazyna et al. (2008) 

 48 68 20m+12st+16a - - Grazyna et al. (2008) 

 48 80-81 16m+16sm+15a(16a) - - Grazyna et al. (2008) 

Colisa labiosa 48 68 20m+10st+18a - - Grazyna et al. (2008) 

Colisa lalia 46 70 24msm+22a - - Grazyna et al. (2008) 

 45 - 26m/sm/st+19a - - Grazyna et al. (2008) 

 46 66 20m+8st+18a - - Grazyna et al. (2008) 

 16 30 14m+2a - - Grazyna et al. (2008) 

Ctenops nobilis 44 60 8m + 8sm + 28t - - Arai (2011) 

Macropodus ocellatus 46 54 4m + 4sm + 38t - - Arai (2011) 

 46 76 8m + 8sm + 14a + 16t - - Arai (2011) 

Macropodus opercularis 46 78 8m + 8sm + 16a + 14t - - Arai (2011) 

 46 72 4m + 10sm + 12a + 20t - - Arai (2011) 

 46 58 12m/sm + 34a/t - - Arai (2011) 

Macropodus chinensis 46 - - - - Grazyna et al. (2008) 

Macropodus concolor 46 56 10m+2sm+22st+12a - - Grazyna et al. (2008) 

Macropodus ocellatus 46 64 8m+8sm+14st+16a - - Grazyna et al. (2008) 

Macropodus opercularis 46 58 12m/sm+34a - - Grazyna et al. (2008) 

 46 64 8m+8sm+16st+14a - - Grazyna et al. (2008) 

Macropodus spechti 46 80 10m + 2sm + 22a + 12t - - Arai (2011) 

Osphronemus gorami 48 50 2sm + 46t - - Arai (2011) 

Parospromenus sumatranus 46 46 46t - - Arai (2011) 

Sphaerichthys osphromenoides 16 30 14m/sm + 2t - - Arai (2011) 

 16 30 10m + 4sm + 2t - - Arai (2011) 

Trichogaster chuna 46 64 10m + 8sm + 28t - - Arai (2011) 

 46 80 20m + 8sm + 6a + 12t - - Arai (2011) 

 46 86 28m + 12sm + 6t - - Arai (2011) 

Trichogaster fasciata 48 86 16m + 16sm + 6a + 10t 2 - Arai (2011) 

 48 75 15m + 12sm/a+ 21t - ZW, F Arai (2011) 

 48 74 14m + 12sm/a + 22t - ZZ, M Arai (2011) 

 48 81 17m + 16sm + 15t - ZW, F Arai (2011) 

 48 80 16m + 16sm + 16t - ZZ, M Arai (2011) 

 48 83 15m + 16sm + 4a +13t 6 ZW, F Arai (2011) 

 48 84 16m + 16sm + 4a + 12t - ZZ, M Arai (2011) 

 48 88 8m + 20sm + 12a + 8t - - Arai (2011) 

 46 76 18m + 12sm + 16t - - Arai (2011) 

Trichogaster labiosa 48 86 22m + 12sm +4a + 12t - - Arai (2011) 

 48 78 12m + 6sm + 12a + 18t - - Arai (2011) 

 48 86 22m + 16sm +10t - - Arai (2011) 

Trichogaster lalius 45 71 14m + 12sm/a + 19t - ZO, F Arai (2011) 

 46 72 14m + 12sm/a + 20t - ZZ, M Arai (2011) 

 46 66 14m + 6sm + 26t - XX, F Arai (2011) 

 45 65 14m + 6sm + 25t - XO, M Arai (2011) 

 46 82 14m + 10sm +12a + 10t - - Arai (2011) 

 46 70 24m/sm + 22a/t - - Arai (2011) 

Trichopodus leeri 46 46 46t - - Arai (2011) 

 46 46 46t - - Arai (2011) 

Trichopodus microlepis 46 46 46t - - Arai (2011) 

 48 48 48t - - Arai (2011) 

Trichopodus pectoralis 46 46 46t - - Arai (2011) 

Trichogaster sumatranus 48 48 48st/a - - Grazyna et al. (2008) 

Trichopodus trichopterus 48 - - - - Arai (2011) 

 46 46 46t - - Arai (2011) 

 46 46 46t - - Arai (2011) 

 46 46 46t - - Arai (2011) 

 46 46 46t 2 - Supiwong et al. (2010) 

Note: 2n: diploid chromosome number; NF: the fundamental number; m: metacentric; sm: submetacentric; a: acrocentric; t: telocentric; 
M: male; and F: female 
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Figure 1. Metaphase chromosome plates and karyotypes of male (A-B and E-F) and female (C-D and G-H) Java combtail fish (Belontia 
hasselti), 2n=48 by conventional straining (A-D) and Ag-NOR banding (E-H) technique. Scale bars indicate 5μm. The arrows indicate 
nucleolar organizer regions/NOR 
 
 
 

Idiograms of Belontia hasselti chromosomes 

All previous results were summarized, and idiograms 

presenting shapes, sizes and probe signals on the 

chromosomes of B. hasselti are shown in Figure 3. 

Discussion 

The present study is the first one providing classical and 

molecular cytogenetics in the genus Belontia. The obtained 

results showed that the diploid chromosome number of B. 

hasselti was 2n=48 for both sexes. It is the same as in some 

Osphronemidae species such as in Osphronemus goramy, 
Trichogaster fasciata, and Trichogaster labiosa (Grazyna 

et al. 2008; Arai 2011). However, it differs from most 

studied species in this family. The NFs were 48 and 49 in 

males and females, respectively (Figures 1-3). The 

different Osphronemidae species underwent an extremely 

diversified karyotype evolution, considering the numerical 

and structural aspects of their complements, with NF that 

varied from 20 to 88 (Arai 2011). Each chromosome 

pattern allows its utilization in the identification of visible 

changes on the karyotype macrostructure of several 

families in the order of Perciformes (Nirchio et al. 2002; 

Gustavo and Molina 2005; Roesti et al. 2013; Molina et al. 

2014; Almeida et al. 2017). Analyses performed to 

highlight the combined importance of the different 
chromosome rearrangements in the evolutionary modeling 

of their karyotypes, such as Robertsonian rearrangements 

or centric fission, fusion, and especially, pericentric 

inversions were important roles for chromosomal 

rearrangements during evolution of Perciformes fishes 
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(Ueno and Takai 2000; Jacobina et al. 2011). The 

occurrence of a large number of telocentric chromosomes 

in the karyotype is a common feature for Osphronemidae 

species, especially in the genus Trichopodus, and was also 

observed in the present study. However, this fish group is 

characterized by the occurrence of a non-conservative 

karyotype, with 2n ranging from 16 to 48 chromosomes 

(Table 1.). 
 

 

 

 
 

Figure 2. Karyotype of male (A, C, E) and female (B, D, F) Java combtail fish (Belontia hasselti), 2n=48 arranged from chromosomes 
after double-fluorescence in situ hybridization (FISH) with 5S rDNA (red) and 18S rDNA (green) probes (A-B), FISH with d(CA)15 

probe (C-D), FISH with d(CAC)10 (E-F). Bars indicate 5 µm. The arrows indicate probe signals 
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Figure 3. Idiograms of the Java combtail fish (Belontia hasselti), representing the haploid set (n=23 + ZW) by conventional staining, 
Ag–NOR banding (A) and FISH (B) techniques 

 
 
 
Table 2.  Means of the short arm length (Ls), long arm length (Ll) and total arm length of chromosomes (LT), relative length (RL), 

centromeric index (CI) and standard deviation (SD) of RL, CI of 20 metaphase cells of the male and female Java combtail fish (Belontia 

hasselti), 2n=48 

 

Chro. pair  LS LL LT RL±SD CI±SD Chro. Size Chro. Type 

1 0.000 1.437 1.437 0.052±0.003 1.000±0.000 Large telocentric 
2 0.000 1.368 1.368 0.050±0.003 1.000±0.000 Large telocentric 
3 0.000 1.334 1.334 0.048±0.002 1.000±0.000 Large telocentric 
4 0.000 1.324 1.324 0.048±0.002 1.000±0.000 Large telocentric 
5 0.000 1.301 1.301 0.047±0.002 1.000±0.000 Large telocentric 
6 0.000 1.270 1.270 0.046±0.002 1.000±0.000 Large telocentric 

7 0.000 1.241 1.241 0.045±0.001 1.000±0.000 Large telocentric 
8 0.000 1.216 1.216 0.044±0.001 1.000±0.000 Large telocentric 
9 0.000 1.201 1.201 0.044±0.001 1.000±0.000 Large telocentric 
10 0.000 1.192 1.192 0.043±0.001 1.000±0.000 Large telocentric 
11 0.000 1.182 1.182 0.043±0.001 1.000±0.000 Large telocentric 
12 0.000 1.171 1.171 0.043±0.001 1.000±0.000 Large telocentric 
13* 0.000 1.150 1.150 0.042±0.001 1.000±0.000 Medium telocentric 
14 0.000 1.130 1.130 0.041±0.001 1.000±0.000 Medium telocentric 

15 0.000 1.125 1.125 0.041±0.001 1.000±0.000 Medium telocentric 
16 0.000 1.112 1.112 0.040±0.001 1.000±0.000 Medium telocentric 
17 0.000 1.094 1.094 0.040±0.001 1.000±0.000 Medium telocentric 
18 0.000 1.076 1.076 0.039±0.001 1.000±0.000 Medium telocentric 
19 0.000 1.052 1.052 0.038±0.001 1.000±0.000 Medium telocentric 
20 0.000 1.033 1.033 0.038±0.001 1.000±0.000 Medium telocentric 
21 0.000 1.008 1.008 0.037±0.001 1.000±0.000 Medium telocentric 
22 0.000 0.985 0.985 0.036±0.001 1.000±0.000 Medium telocentric 

23 0.000 0.954 0.954 0.035±0.001 1.000±0.000 Medium telocentric 
Z 0.000 0.897 0.897 0.033±0.002 1.000±0.000 Medium telocentric 
W 0.680 0.757 1.437 0.052±0.018 0.528±0.118 Large metacentric 

Remarks: Chro.: Chromosome, *: NOR-bearing chromosome 
 
 
 

In a comparative karyotypic analysis of males and 

females in B. hasselti, the presence of a female-specific 

large metacentric chromosome pointed towards the 

occurrence of a ZZ/ZW sex chromosome system, where the 

Z chromosome is represented by a small-sized telocentric. 

Inside the Osphronemidae family, two other species, 

named T. fasciata and T. lalius also presented differentiated 

sex chromosomes. T. fasciata has the ZZ/ZW sex 

chromosome system in some populations, whereas T. lalius 

present variations of sex chromosome systems as ZZ/ZO 

and XX/XO (Arai 2011). The absence of differentiated sex 
chromosomes can be considered as a plesiomorphic feature 

(Vicari et al. 2008). Although most Neotropical fish species 

do not have differentiated sex chromosomes, some other 

kinds of sex chromosome systems have already described 

in some families. In certain groups, such as some species of 

Anostomidae and Triportheinae, only the ZZ/ZW system 

was identified, while in other groups, such as Belontidae, 

Parodontidae and Erythrnidae, different sex chromosome 

systems were detected (Arai 2011; Cioffi et al. 2017). 

These results support the hypothesis of the differentiation 

of sex chromosomes in fishes having occurred 

independently in different groups (Almeida-Toledo et al. 
2000). The presence of a sex chromosome system in the B. 
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hasselti reinforces the evidence of divergent karyotypic 

evolution in this group. 

B. hasselti is characterized by a single pair of Ag-

NORs, located at the interstitial subcentromeric regions of 

pair 13 in both the sexes. The single pair of NOR-bearing 

chromosomes is in accordance with Trichopodus 

trichopterus, but differs for the NOR location in telomeric 

region of the telocentric pair 2 (Supiwong et al. 2010). 

However, intraspecific NOR polymorphisms can be seen in 

T. fasciata in which one and three homologous 
chromosomes with NORs were reported (Sobita and 

Bhagirath 2007; Kushwaha et al. 2008). In fishes, the 

location of NORs in a terminal position, and close to the 

centromere, is also pondered to be a primitive feature. 

Single NORs are widespread in several fish taxa (Gornung 

2013; Sochorová et al. 2018). Species with multiple NORs 

are not rare among fishes (Martinez et al. 2010). The 

presented results here indicated a plesiomorphic or a 

primitive condition, whereas multiple pairs of NORs were 

suggested to be an apomorphic or derived condition 

(Milhomem et al. 2013). 
Our results revealed that the 5S rDNA and 18S rDNA 

sequences were present at interstitial subcentromeric 

regions of pairs 1 and 13, respectively. For comparison 

with other species in the same family, only one species, T. 

trichopterus has so far been studied. The present results 

differ, as the 5S rRNA gene is located at a proximal region 

on a pair of medium-sized chromosomes, whereas the 18S 

ribosomal gene is located at the telomeric region on long 

arms of the largest acrocentric pair (Pazza et al. 2009). 

Moreover, the 18S rDNA signals were located on 

chromosome pair 13, which is consistent with NORs 
regions. The location of NORs has been confirmed by 

FISH using rRNA or rDNA probes in fixed chromosomes 

of several vertebrates, including amphibians, humans, 

chimpanzees (Sluisa et al. 2012; Hirai 2020), and more 

recently, fishes (Rubert et al. 2011; Milhomem et al. 2013; 

Fernandes et al. 2019). In higher eukaryotes, the 

moderately repetitive ribosomal RNA genes (rDNAs) are 

arranged in two different families: the nucleolus forming 

major (45S), and the non-nucleolus forming minor (5S) 

rDNAs. The major family is composed of the regions 

coding for 18S, 5.8S and 28S rRNA genes, separated by 

internal transcribed spacers (ITS 1 and ITS 2), and 
surrounded by non-transcribed spacer (NTS) sequences 

(Singh et al. 2010). The nucleolar organizer regions contain 

45S rDNA gene cluster, which has also been studied 

employing AgNO3 and CMA3 staining. The minor family 

is composed of highly conserved 120 bp long coding 

sequences separated by a variable non-transcribed spacer 

(NTS) (Da Silva et al. 2012). Martins and Galetti Jr. (2001) 

propose that the 5S rDNA interstitial position is optimal for 

its organization in fishes, since it has been found in most 

species of several orders. For these reasons, the 

conservation of the 5S rDNA distribution pattern may 
derive from the interstitial localization of these sites in the 

chromosomes.  

The microsatellite repeats on the chromosomes of B. 

hasselti showed that d(CA)15 signals are present on all 

chromosome pairs, throughout the whole chromosomes 

except for centromeric regions of some pairs (pairs 2, 4, 8, 

10, 15, and sex chromosome in both sexes), whereas, in 

most cases, they were found along the whole 

chromosomes. The patterns of d(CA)15 in B. hasselti are 

similar to Mystus species (Supiwong et al. 2013a) and Thai 

pufferfish Pao cochinchinensis (Pissaparn et al. 2020). In 

turn, this pattern is inconsistent with other fish, for 

example, the Hoplias malabaricus Bloch 1794, d(CA)15 

probe signals provided a rich banding pattern in the 

subtelomeric region along most chromosome arms, while 
d(CA)15 had only slight accumulation on the sex 

chromosomes (X and Y) (Cioffi et al. 2011). In the Toxotes 

chatareus Hamilton 1822, the d(CA)15 repeats are 

abundantly distributed in all chromosomes, mostly in 

telomeric regions (Supiwong et al. 2017). From previous 

studies, it has been generally believed that microsatellites 

have specific zones as heterochromatin (telomeres, 

centromeres, and in the sex chromosomes) of fish genomes 

(Cioffi et al. 2011).  

The pattern of d(CAC)10 hybridized to the autosomes at 

the interstitial subcentromeric region on chromosome pair 
13, showed interaction with NOR sites, and overlap with 

patterns of 18S rDNA in the present study. The pattern 

differs to that of d(CAC)10 on H. malabaricus, producing a 

scattered distribution, and is thus more spread out along the 

autosomes. Furthermore, the microsatellite d(CAC)10 was 

uniformly spread along the X chromosome, with just some 

weak signals in the heterochromatic areas and on the Y 

chromosome were slightly accumulated in the centromeric 

and/or telomeric heterochromatic regions (Cioffi et al. 

2011). However, microsatellites have also been found in 

non-centromeric regions, many of them located either near 
or within genes (Rao et al. 2010), as found in the present 

study. 

In summary, here we provided the first (molecular) 

cytogenetic study of the B. hasselti, proposing the probable 

occurrence of a ZZ/ZW sex chromosome system, that 

needs further confirmation. The results obtained here can 

be used to support further investigation of taxonomy and 

evolutionary relationship among the family Osphronemidae 

and others. 
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