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Abstract. Suroto DA, Hasan PN, Rahayu ES. 2021. Genomic insight of two indigenous probiotics Lactobacillus plantarum Dad-13 and 
Lactobacillus plantarum Mut-7 from different origins of Indonesian fermented foods. Biodiversitas 22: 5491-5500. Lactobacillus 
plantarum Dad-13 and Lactobacillus plantarum Mut-7 are probiotics isolated from traditional fermented foods. In the present study two 
strains of L. plantarum were sequenced using Illumina NovaSeq PE150 platform and in silico analysis was performed using RAST 
webserver to unravel the functional metabolic between two strains. The L. plantarum Dad-13 and Mut-7 genome sizes were 3.25 and 
3.98 Mb with GC content of them being almost similar i.e. 44.4 and 44.3%, respectively. Two lactobacilli also had some differences in 
their metabolic genes, particularly in carbohydrate subsystem. L. plantarum Mut-7 had genes related to the metabolisms of plant cell 
wall components such as dextrin, arabinose, xylose indicated the adaptation to their environmental origins (fermented dried cassava), 
while those genes were not observed in L. plantarum Dad-13 which was isolated from fermented buffalo’s milk (dadih). Further 

analysis using BAGEL4 webserver exhibited their different potential to synthesize bacteriocins, L. plantarum Dad-13 was predicted to 
produce more types of bacteriocins than L. plantarum Mut-7. This investigation revealed that L. plantarum Dad-13 and L. plantarum 
Mut-7 have a great potential related with their properties as probiotics.  
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INTRODUCTION 

Lactic acid bacteria (LAB) are well known to inhabit 

diverse environments, such as in carbohydrate-rich food of 

plants (Sakandar et al. 2019; Ashaolu and Reale 2020) and 

animal origin (Albayrak and Duran 2021; Gupta et al. 

2021), mucosa and intestinal of human or animal 
(Medjaoui et al. 2016; Fečkaninová et al. 2019; Li et al. 

2020), terrestrial and aquatic environment (Sica et al. 2010; 

Fhoula et al. 2013; Prasirtsak et al. 2013). 

LAB have a substantial role in fermented foods, such 

that they enhance flavor, increase nutritional value and 

even play a role as food preservatives (Nuraida 2015; 

Behera et al. 2020). LAB are known to have probiotic 

properties due to their health beneficial effects (Linares et 

al. 2017; Ayivi et al. 2020). Probiotics can maintain the 

condition of the digestive tract by inhibiting the growth of 

pathogenic bacteria and increasing favorable bacteria 

(Sarkono et al. 2010; Bermundez-britho et al. 2012; Trush 
et al. 2020). The functional properties of probiotic are 

strain dependent, and each strain has unique characteristics 

and functional properties (Shiroda and Manning 2020; 

Sophatha et al. 2020).  

 Lactobacillus plantarum plays an important role in 

well-known fermented foods of animal and vegetable 

origin including kimchi, sauerkraut, cheese, kefir, 

sourdough, vegetable pickles (Nuraida 2015; Tamang et al. 

2016) and recognized as Generally Recognized as Safe 

(GRAS) by Food and Drug Administration (Behera et al. 

2018). L. plantarum showed survival ability against gastric 

acid and bile salt and can colonize in the human intestinal 

tract (Le and Yang 2018; Zhang et al. 2020) make them a 
suitable candidate for probiotics development. In addition, 

L. plantarum is attracting medical science due to its 

cholesterol-lowering properties, reducing blood level, anti-

cancer properties, kidney protection properties, and 

immunomodulatory properties (Arasu et al. 2016).  

LAB as probiotics are also strongly affected by their 

ability to produce bacteriocins as antibacterial substances 

that can inhibit the growth of pathogenic bacteria 

(Bermudez-britho et al. 2012; Ramu et al. 2015). L. 

plantarum produces a group of bacteriocins known as 

plantaricins that show antibacterial properties against a 

handful of pathogenic bacteria (Todorov et al. 2016; 
Butorac et al. 2020; Ahaddin et al. 2021), and show 

potential for food preservatives (Kareem and Razavi 2019). 

Indonesian indigenous fermented foods have a long 

history of benefiting from lactic acid bacteria. L. plantarum 

has been isolated from several kinds of Indonesian 

indigenous fermented food, such as tempoyak, mandai, 

gatot, growol, dadih, bekasam etc (Nuraida 2015). Several 

strains of L. plantarum have been isolated from plant and 
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animal origin of fermented foods. L. plantarum Dad-13 

isolated from dadih (fermented buffalo’s milk) and L. 

plantarum Mut-7 isolated from gatot (fermented dried 

cassava) (Rahayu 2003). These isolates showed health 

benefit properties and potential candidates for local 

probiotics. L. plantarum Dad-13 could increase the 

population of Lactobacilli and inhibit the growth of 

Enterobacteriaceae (Rahayu et al. 2016);  L. plantarum 

Mut-7 could increase the population of Lactobacillus in 

fecal and could survive in  intestine (Fitrianingthias et al. 
2018). The safety assessment of two L. plantarum also has 

been studied (Rahayu et al. 2019; Ikhsani et al. 2020). The 

whole study indicated that those strains are promising local 

probiotics for Indonesian population.  

The aim of the present study was to perform genomic 

analysis of two L. plantarum strains to explore their strain-

specific characteristic and their capability to produce 

secondary metabolites, especially bacteriocins.  

MATERIAL AND METHODS 

Bacterial strains and culture 

L. plantarum Dad-13 and Mut-7 were obtained from 
FNCC (Food and Nutrition Culture Collection), Center of 

Food and Nutrition Studies Universitas Gadjah Mada, 

Yogyakarta, Indonesia. Isolates were inoculated in de Man 

Rogosa and Sharpe (MRS) broth and incubated at 37ºC for 

36-48 hours.  

Bacterial genomic extraction 

Genomic DNA was extracted by the SDS method (Lim 

et al. 2016a). The harvested DNA was detected by agarose 

gel electrophoresis and quantified by Qubit® 2.0 

Fluorometer (Thermo Scientific). 

Library construction and  sequencing 
A total amount of 1µg DNA per sample was used as 

input material for DNA sample preparation. Sequencing 

libraries were generated using NEBNext® Ultra™ DNA 

Library Prep Kit for Illumina (NEB, USA) following 

the manufacturer’s recommendations and index codes 

were added to attribute sequences to each sample. Briefly, 

DNA sample was fragmented by sonication to a size of 

350bp, then DNA fragments were end-polished, A- 

tailed, and ligated with the full-length adaptor for Illumina 

sequencing for further PCR amplification. At last, PCR 

products were purified (AMPure XP system) and libraries 

were analysed for size distribution by Agilent2100 
Bioanalyzer and quantified using real-time PCR. The 

genome sequencing was performed using  Illumina  

NovaSeq  PE150 platform. 

Genome assembly 

De novo assembly of raw reads data was performed by 

SOAP denovo software, followed by SPAdes software 

(version SPAdes-3.12.0-Linux) in a Linux environment 

(Bankevich et al. 2012), different K-mers (99 and 127) 

were selected for assembly. According to the project type,  

assembly result was obtained with the optimal K-mer and 

the least scaffolds. The results from SPAdes were 

assembled using AbySS software (Simpson et al. 2009). K-

mer 64 was selected for assembly. The assembly results of 

three softwares were integrated with CISA software (Lin 

and Liao 2013), and assembly result with the least scaffolds 

were selected. The SOAPGapcloser software (Luo et al. 

2021) was used to fill the gap of preliminary assembly 

results.  

Bioinformatic analysis 
Genome annotation was identified by using the online 

program Rapid Annotation using Subsystem Technologies 

(RAST) SEED (http://rast.nmpdr.org/) (Overbeek et al. 2014). 

Secondary metabolites gene clusters were predicted using 

AntiSMASH 6 (https://antismash.secondarymetabolites.org/) 

(Blin et al. 2021). Further annotations of bacteriocin gene 

clusters were performed using Bagel4 

(http://bagel4.molgenrug.nl/index.php) (van Heel et al. 2014). 

RESULTS AND DISCUSSION 

Genome features of Lactobacillus plantarum Dad-13 and 

L. plantarum Mut-7 
The present study revealed that two indigenous strains 

have different genome sizes. The circular L. plantarum 

Mut-7 genome was approximately 0.147 Mb larger than L. 

plantarum Dad-13, with GC content being almost similar 

i.e. 44.4 and 44.3 %. Consequently, Mut-7 contained more 

coding sequences as well as RNA. Gene prediction and 

annotation showed that L. plantarum Dad-13 and Mut-7 

possess 3074 and 3214 coding sequences, respectively 

(Table 1). The genome size and GC content of Mut-7 and 

Dad-13 are within the range observed for most L. 

plantarum strains (Yu et al. 2017; Kim et al. 2020). The 
different size and number of genes have also been studied 

in L. plantarum (Yu et al. 2017; Rodrigo-torres et al. 2019; 

Kim et al. 2020). L. plantarum Dad-13 and Mut-7 were 

almost identical in the protein sequence as shown in Figure 

1. However,  some regions showed low identity, mainly 

hypothetical proteins and phages. 

 

 

 
Table 1. Genome features of Lactobacillus plantarum Dad-13 
and L. plantarum Mut-7 
 

Features 
L. plantarum 

Dad-13 

L. plantarum 

Mut-7 

Genome size (bp) 3,250,375 3,398,000 

%GC content 44.4% 44.3% 

RNA 75 87 

Coding sequences 3074 3214 

N50 (bp) 332,562 163,062 

No of contigs 27 36 
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Figure 1. Graphical genomic comparison map of Lactobacillus plantarum strains with Seed Viewer sequenced-based comparison tool 
in RAST webserver. From outer to inner ring: strain Mut-7, Dad-13. Colors denote amino acid similarity percentage to the reference 

genome, from purple (100%) to light red (10%) 
 
 

In silico analysis of functional metabolic pathways 

Based on RAST analysis, the coverage subsystems of L. 

plantarum Dad-13 had a total of 1273 features, with 1217 

non-hypotethical subsystem and 56 hypotethical subsystem. L. 
plantarum Mut-7 had 1337 features including 1279 

nonhypothetical subsystems and 58 hypothetical 

subsystems. In both strains genes related to carbohydrate 

subsystem category had high proportion followed by amino 

acid and derivatives, protein metabolisms, cell wall and 

capsule,  cofactors, vitamins and prosthetic group, and 

RNA metabolisms (Figure 2). Mut-7 encoded 456 genes on 

carbohydrate subsystem, while Dad-13 encoded only 416 

genes, Mut-7 encoded 231 genes on amino acids and 

derivatives followed by 223 genes in Dad-13. The number 

of genes related to capsule and cell wall, DNA metabolism, 

phage and prophages, and amino acid derivative protein 
metabolisms in L. plantarum Mut-7 were 147, 98, 28, 231, 

188, respectively, which was comparatively larger than 

Lactobacillus Dad-13. Plasmids, which may transfer their 

genetic material to other microorganisms, were not 

detected in both lactobacilli. 

The two strains have mostly common functional genes, 

however there were some differences in both lactobacilli. 

Especially in carbohydrate subsystem category, followed 

by cell wall and capsule subsystem, DNA metabolism, 

phages, prophages, transposable elements, and amino acid 

and derivatives category (Figure 2). While the numbers of 
other genes were almost similar, but some genes were 

present in several copies, or some unique genes were 

present in only one strain. L. plantarum Mut-7 and L. 

plantarum Dad-13 had 56 and 13 extra unique genes, 

respectively (Table 2). In L. plantarum Mut-7, 17 of extra 

unique genes were related to carbohydrate metabolism, 

especially fructose-1,6-bisphosphatase, PEP Pyruvate 
carboxyl transferase, maltose-6'-phosphate glucosidase, 

some gene related to xylose, arabinose utilization 

subsystem. Indeed, they also shared some genes related to 

carbohydrate metabolism such as for maltodextrin 

utilization, but maltose-6'-phosphate glucosidase was 

absent in Dad-13. Exclusively several genes for xylose and 

arabinose utilization were only present in Mut-7. The 

unique genes for monosaccharide utilization seem related 

to plant-based origin of L. plantarum Mut-7 in which 

sugars like dextrin, arabinose, and xylose are common in 

the plant product. This phenomenon was also observed in 

Lactococcus lactis from plant origin that show the presence 
of dextrin, arabinose, and xylose while the one from animal 

origin did not, indicated the adaptation to their growth in 

plant cell wall substances (Siezen et al. 2008; Xiao et al. 

2021). 

Lactobacillus plantarum Dad-13 possessed chitinase, a 

beta glucosidase related to lichenan, a complex glucan 

consisting of glucosyl connected with 1,3 and 1,4 bonds, 

and sucrose 6 phosphate hydrolase. It also occurred in  

betaglucosidase metabolism and in fructooligoscharides 

utilization, in which they both shared 39 genes. Even 

though Mut-7 shared some genes related to chitin and N 

acetyl glucosamine, but the chitinases were only present in 

Dad-13.  
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Table 2. Features of unique genes in Lactobacillus plantarum Dad-13 and L. plantarum  Mut-7 

 

Functional subsystems Lactobacillus plantarum Dad-13 Lactobacillus plantarum Mut-7 

No of unique 

genes 

Description No of unique 

genes 

Description 

Carbohydrate 4 Chitinase, beta-Glucoside metabolism, 
transcriptional antiterminator of lichenan 
operon, sucrose-6-phosphate hydrolase  

17 Fructose-1,6-bisphosphatase pyruvate carboxyl transferase, maltose-6'-
phosphate glucosidase galactitol operon regulator (Transcriptional 
antiterminator), arabinose-proton symporter, L-arabinose isomerase, 

ribulokinase, transcriptional repressor of arabinoside utilization operon, 
L-ribulose-5-phosphate 4-epimerase, alpha-xylosidase, xylose 
isomerase, xylose-responsive transcription regulator: ROK family 

Capsule and cell wall - - 7 Capsular and extracellular polysaccharide rhamnose containing glycan 
synthesis, exopolysaccharide (Glycosyl transferase, group 2 family 
protein), teichoic and lipoteichoic acids biosynthesis CDP 
glycerol:poly(glycerophosphate) glycerophosphotransferase (EC 
2.7.8.12) 

DNA metabolism 3 Exonuclease family protein YhaO,  bacterial 
DNA-cytosine methyltransferase bacterial 
MutL-MutS system, MutS domain protein, 
family 4 

11 RecT, DNA topoisomerase III, Type I restriction-modification system, 
DNA-methyltransferase subunit M, Type I restriction-modification 
system, restriction subunit R, Type I restriction-modification system, 
specificity subunit S 
CRISPR-associated protein Cas1, CRISPR-associated protein Cas2, 
CRISPR-associated protein, Csn1 family 

Amino acids and derivative - - 3 D-serine dehydratase transcriptional activator, Intermediate for 
synthesis of Tryptophan, PAPA antibiotics, PABA, 3-

hydroxyanthranilate, cysteine biosynthesis, para-aminobenzoate 
synthase, amidotransferase component (EC 2.6.1.85),  

Phages, prophages, 
transposable element, 
plasmid 

3 Phage capsid scaffolding protein, phage tail 
fiber protein, phage minor capsid protein,  

9 Phage capsid protein, phage head maturation protease, phage DNA 
packaging, phage terminase small subunit, phage tail fiber proteins, 
phage tail proteins, phage major tail protein, phage tail assembly 

Cofactor,vitamins, prosthetic 
group 

- - 3 NAD and NADP cofactor biosynthesis, riboflavin, FMN, and FAD 
metabolism  

Nucleosides and Nucleotides - - 2 Uridine phosphorylase (EC 2.4.2.3) 

Phosphorus metabolism - - 1 High affinity phosphate transporter and control of PHO  

Regulation and cell signalling - - 3 Autolysis histidine kinase LytS regulation and Cell signaling, autolysis 
response regulator LytR, cAMP signaling in bacteria  

Sulfur metabolism 3 Organic sulfur assimilation: alkanesulfonate 
assimilation ABC-type 
nitrate/sulfonate/bicarbonate transport systems, 
periplasmic components, Alkanesulfonates ABC 
transporter ATP-binding protein,  

-  
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Figure 2. Results of RAST analysis of Lactobacillus plantarum Dad-13 and L. plantarum Mut-7 
 
 

 

Lactobacillus plantarum Mut-7 also had a high 

proportion of unique genes related to cell wall and capsule, 

DNA metabolism and phages, prophages, transposable 

elements, plasmids. In the cell wall and capsule category, 

genes related to capsular and extracellular polysaccharide, 

especially in rhamnose containing glycan synthesis and 

exopolysaccharide (EPS) biosynthesis were lacking in Dad-

13. But, EPS biosynthesis which was encoded by glycosyl 
transferase group 2 family’s gene was present in Mut-7, 

indicating a potential ability of Mut-7 to produce EPS. EPS 

are loosely associated with the microbial cell surface and 

released into the surrounding environment (Chapot-

Chartier and Kulakauskas 2014). The presence of 

exopolysaccharide- synthesized genes is indicative of its 

important role in industrial applications, as they give the 

desired texture to products and some health benefits (Silva 

et al. 2019). 

Genes in rhamnose containing glycan synthesis may 

play an important role for cell wall synthesis, in which 

rhamnose is one of the major sugars present in the cell wall 
of several bacteria Lactococcus, Streptococcus and 

Enterococcus, and Lactobacillus (Vinogradov 2016; 

Garcia-Vello et al. 2020).  

Lactobacillus plantarum Mut-7 had a unique genes in 

DNA metabolism which was not present in Dad-13, most 

genes related to restricted modification system and 

Clustered Regularly Interspaced Palindromic Repeats 

(CRISPR) associated proteins. The presence of CRISPR-

Cas proteins in Mut-7 may inhibit the conjugation and 

bacteriophage infection (Richter et al 2012). They can also 

prevent the natural transformation of foreign nucleic acids 
fragments, which can contribute to making this strain 

genetically more stable (He et al. 2018; Tarrah et al. 2020). 

These sequences have been shown to be involved in 

resistance to bacteriophages (Deem et al. 2020). They play 

a critical role in the adaptation and persistence of a 

microbial host in a particular ecosystem (Westra et 

al.2020). 

Unlike L. plantarum Mut-7, L. plantarum Dad-13 

lacked genes encoding phage capsid proteins, phage head 

maturation protease, phage DNA packaging, phage 

packaging machinery, phage terminase small subunit, 

phage tail fiber proteins, phage major tail protein, phage 

tail proteins, phage tail assembly. However, Dad-13 
possessed genes encoding phage capsid scaffolding protein, 

phage minor capsid protein, phage tail fiber protein which 

were absent in Mut-7. In addition, L. plantarum Dad-13 

also possessed a unique gene in sulfur metabolism 

category. Minor number of unique genes in L. plantarum 

Mut-7 was also observed in amino acid derivatives, 

cofactors, vitamins, prosthetic group, nucleosides and 

nucleotides, phosphorus metabolism regulation and cell 

signalling subsystem category.  

In silico analysis of genes related to secondary 

metabolism 

The results exhibited that both strains had four clusters 
related to the secondary metabolism, namely terpene, 

Polyketide Synthase (PKS) type III, Ribosomally 

Synthesized and Post Translationally Modified Peptide 

(RiPP), and cyclic lactone autoinducer. Each cluster was 

predicted to have almost similar size, except RiPP cluster 

(Table 3).  Terpene biosynthetic gene cluster is predicted to 

involve in phytoene biosynthesis which belongs to 

carotenoid group.  PKS type III showed high homology to 

chalcone synthetase. encode the same function as 

hydroxymethylglutaryl-CoA synthase. Chalcone synthase 

is an enzyme that is responsible for the biosynthesis of 
flavonoid compounds (Waki et al. 2020), and is widely 

present in plants, fungi, and bacteria (Austin and Noel 

2003; Lim et al. 2016b).  
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Table 3. Predicted secondary metabolite gene clusters in Lactobacillus plantarum Dad-13 and L. plantarum Mut-7 
 

Biosynthetic gene clusters 
L. plantarum Dad-13 L. plantarum Mut-7 

Region/size Region/size 

Terpene 58,162 nt-79,043 nt/ 20,881nt 434,387 nt-455,268 nt/ 20,881 
PKS Type III 309,144 nt-350,313 nt/ 41,169 nt 129,364 nt-170,533 nt/ 41,169 nt 
Cyclic lactone 197,434 nt-218,139 nt/ 20,705 nt 31,932 nt-52,687 nt/ 20,755 nt 
Ribosomally Synthesized and Post Translationally Modified 

Peptide (RiPP)  

441,720 nt-414,644 nt/ 27,076 nt 48,957 nt-60,786 nt/ 11,829 nt 

 
 
 

 
 
Figure 3. Area of Interest (AOI) Lactobacillus plantarum DAD-13 in scaffold 2. Genes with function are determined from left to right 
(gene name function). Orf 1-6 hyphotethical protein; orf8, glactoside O-acyctransferase; orf9,drugefflux pump; orf11, S-amino-6(5-
phopho-D-ribitylamino)uracil phosphatase; orf14,HTH-type transcriptional activator; orf15,sugar phosphatase; orf17,branched chain 

amino acid transportsystem carrier protein; orf20,Na(+)/H(+) antiporter; orf22, hypothetical protein; comC, plantaricin NC8; comC, 

plantaricin NC8; orf28, putative imunity protein; orf31,transposase; orf33, Na(+)/H(+) -K(+) antiporter; orf35, lactococin; comC, 
enterocin X chain beta; orf37-39,hypothetical protein; orf41, putative bacteriocin immunity protein; plantaricin J, Plantaricin 

J;plantaricin J, plantaricin J; orf46-47, hypothetical protein; plantaricin A, plantaricin A; orf52, bacteriocin production related histidine 
kinase; orf53, response regulator PlnC; orf54, response regulator PlnD; orf59, immunity protein plnI;plantaricin F, planataricin 
F;plantaricin E, plantaricin E;lantT, bacteriocin ABC transporter; hylD,accessory factor for ABC-transporter PlnH; orf70, protein 
Yvdc;orf71, CPBP intramembrane metalloprotease; orf 73, Plns; orf74, PLns; orf 75, hyphotetical protein; orf 77, DNA helicase IV 
 
 
 

 
 
Figure 4.  Area of Interest (AOI) Lactobacillus plantarum Mut-7 in scaffold 5. Genes with function are determined from left to right 
(gene name function). orf1, hyphothetical protein; orf3, hypothetical protein; orf5, galactoside O-acetyltransferase; orf6, 
methylenomycin A resistance; orf8,5-amino-6 (5-phospho D-ribitylamino) uracil phosphate; orf11,HTH transcriptional activator;orf12 
sugarphosphatase;orf14, branched-chain amino acid system;orf17, Na(+)/H(+) antiporter;orf19, hyphotethical protein; orf20,plnR; 
orf22, putative bacteriocin immunity protein plnM; comC, plantaricin K; plantaricin J, plantaricin J;orf27, hypothetical protein;orf 28, 
LACPL immunity protein PlnM;plantaricin N, planataricin N;glys S, PlnO;orf32, LACPL immunity protein PlnI; orf34, hyphothtetical 

protein; plantaricin A,plantaricin A; orf37, Bacteriocin related histidine kinase; orf38, response regulator PlnC; orf39, response regulator 
PlnD; orf43, LACPL immunity protein PLnI; plantaricin F, plantaricin F; plantaricin E, plantaricin E; lanT, bacteriocin ABC-
transporter ATP-binding and permease protein; lanT bacteriocin ABC-transporter ATP-binding and permease protein; HylD, Accesory 
factor for ABC-transporter PlnH; orf54, PlnS; orf56, CPBP family inter membran metalloprotein; orf57, PLnS; orf59, PlnS; orf60:toxin 
HigB; orf62, plnY; orf65, DNA Helicase IV 
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Since Ribosomally Synthesized and Post Translationally 

Modified Peptide (RiPP) cluster is closely associated with 

bacteriocins (Mathur et al. 2021). Scaffold 2 of L. 

plantarum Dad-13 and scaffold 5 of L. plantarum Mut-7 

which habour RiPP cluster were genome mined using 

BAGEL4 to know whether by both strains may produce 

bacteriocins. Lactobacillus, known to produce bacteriocins 

(Gaspar et al. 2018; Wang et al. 2018; Mira-Villalobos et 

al. 2020) and other secondary metabolites such as L13 (3-

phenyl-1, 2, 4-benzotriazine), 3-phenyllactic acid (Arasu et 
al. 2013; Sentürk et al. 2020). L. plantarum is well known 

to produce plantaricins, a bacteriocin showing various 

bactericidal and bacteriostatic activities (Zhu et al. 2014; 

Wen et al. 2016; Zhao et al. 2016; Wang et al. 2018). 

Plantaricins together with Pediocins belong to a class II 

bacteriocins, with small molecular weight of less than 10 

kDa, heat-stable, and non-lantibiotic peptides (Barbosa et 

al. 2021). 

It was observed that each cluster can potentially 

produce several bacteriocins types. The size of bacteriocins 

gene clusters in Dad-13 and Mut-7 were 30.591 nt and 
29.498 nt, respectively as predicted by BAGEL4. L. 

plantarum Dad-13 predicted to produce eight types of 

bacterioncins, namely plantaricins A, E, F, J, NC8 alpha, 

NC8 beta, lactococin, and enterocin (Figure 3, Table 4), 

whereas Mut-7 was predicted to produce six types of 

bacteriocins : plantaricin A, E, F, J, K, and N (Figure 4, 

Table 5). Each of bacteriocin cluster was equipped with 

HylD and Lant T genes which were involved in transport 

and leader peptide cleavage. In Dad-13, their position was 

in the upstream region of plantaricin encoding genes, 

whereas in Mut 7 it was in the downstream region of the 
bacteriocin gene clusters. LanT gene homologues encoded 

the bacteriocin ABC transporter, the ATP binding protein, 

and the permease protein PlnG. 

Various types of plantaricins produced by L. plantarum 

have antibacterial properties and their mechanism for 

bacterial growth inhibition varies considerably (Kareem 

and Razavi 2019). However, at present the prospects of 

plantaricins are numerous such as, biopreservation agents 

of raw food, antibacterial packaging agent, anti-cancer, 

antioxidants, and anti cholesterol agent (Syaputri and 

Iwahashi 2020). Dad-13 was predicted to produce not only 
plantaricin bacteriocin but also lactococin and enterocin. 

Mut-7 was predicted to produce only plantaricin type 

bacteriocin, particularly plantaricin K/N, in addition to A, 

E, F, J but not plantaricin NC, lactococin, and enterocin. 

Plantaricin, E/F and J/K showed antibacterial against 

Staphylococcus epidermidis by destruction of cell 

membrane and also show synergistic effect with several 

antibiotics (Selegård et al. 2019).  Plantaricin  NC8 α/β was 

found active against Staphylococcus spp. and possibly to be 

developed as an adjuvant in combination therapy to 

potentiate the effects of antibiotics and reduce their overall 
(Bengtsson 2020). The plantaricin A showed a narrow 

spectrum and weak bacteriocins, acting as inducer for 

production of plantaricin E/F and J/K (Kareem and Ravazi 

2019). 

The difference of bacteriocins or plantaricins produced 

by Dad-13 and Mut-7 may affect their antimicrobial 

properties. L. plantarum Dad-13 was able to inhibit the 

growth of Escherichia coli, Shigella dysenteriae, and 

Salmonella typhi, while L. plantarum Mut-7 showed 

similar activity but not inhibited S. typhi (Rahayu et al. 

2015). 

 

 
Table 4. BAGEL4 webserver’s prediction of plantaricins and their amino acid sequences produced Lactobacillus plantarum Dad-13  
 

Type of bacteriocins Amino acid sequences 
Match 

score 

Plantaricin E  MLQFEKLQYSRLPQKKLAKISGGFNRGGYNFGKSVRHVVDAIGSVAGIRGILKSIR 100% 

Plantaricin F  MKKFLVLRDRELNAISGGVFHAYSARGVRNNYKSAVGPADWVISAVRGFIHG 100% 
Plantaricin A  VIIMKIQIKSMKQLSNKEMQKIVGGKSSAYSLQMGATAIKQVKKLFKKWGW 97.92% 
Plantaricin J  LEGSWKNFWSSFKFYAGEAGRVVRMSLNTCLNRSHAL 66.67% 
Plantaricin J  MDKTLKNLDTVDAFASISNNKLNGVVGRLLEKFLV 74.04% 
Lactococin VIKMKNINNFQALQKNELSKVKGGSNNKFWTWAGYTYENWRISSRRAFNLRQRKNTMTHH 75.86% 
Enterococin X chain  MRKSISNFKALNEKELGAVNGGIWQWIVGGLGFLAGDAWSHSDQISSGIKKRKKKGYG 53.91% 
Plantaricin NC8 alpha MDKFEKISTSNLEKISGGDLTTKLWSSWGYYLGKKARWNLKHPYVQF 100% 
PlantaricinNC8 beta MNNLNKFSTLGKSSLSQIEGGSVPTSVYTLGIKILWSAYKHRKTIEKSFNKGFYH 100% 

 

 

 
Table 5. BAGEL4 webserver’s prediction of plantaricins and their amino acid sequences produced by Lactobacillus plantarum Mut-7  
 

Type of 

bacteriocins 
Amino acid sequence Match score 

Plantaricin K MKIKLTVLNEFEELTADAEKNISGGRRSRKNGIGYAIGYAFGAVERAVLGGSRDYNK 100% 
Plantaricin J  MTVNKMIKDLDVVDAFAPISNNKLNGVVGGGAWKNFWSSLRKGFYDGEAGRAIRR 100% 
Plantaricin N  MKSLDKIAGLGIEMAEKDLTTVEGGKNYSKTWWYKSLTLLGKVAEGTSSAWHGLG 100% 
Plantaricin A  VIIMKIQIKGMKQLSNKEMQKIVGGKSSAYSLQMGATAIKQVKKLFKKWGW 100% 
Plantaricin F  MKKFLVLRDRELNAISGGVFHAYSARGVRNNYKSAVGPADWVISAVRGFIHG 100% 
Plantaricin E  MLQFEKLQYSRLLQKKLAKISGGFNRGGYNFGKSVRHVVDAIGSVAGIRGILKSIR 98.21% 
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The results of present study highlight the singularity of 

strains and their metabolic capacities. Both strains were 

similar in many ways, but some differences were found 

exclusively in their carbohydrate metabolism, capsule and 

cell wall synthesis, DNA metabolism, prophage/phage, and 

bacteriocins production. L. plantarum Mut-7 originated 

from gatot (fermented dried cassava) possesses a larger 

genome size than L. plantarum Dad-13 originated from 

dadih (fermented buffalo’s milk). Mut-7 also possesses 

unique genes for plant carbohydrates metabolism indicating 
the adaptation to the plant environment. Therefore, Dad-13 

produces more types of bacteriocins than Mut-7, which 

may affect their antibacterial properties.  

Our approach to sequence L. plantarum from different 

origins of natural habitat provides quick insight into their 

diversity. It is essential to isolate and sequence other lactic 

bacteria from various origins of indigenous fermented 

foods to untap their metabolic or probiotics potential. Thus, 

their beneficial properties can be applied to improve food 

processing, food safety, and human health. 
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