The diversity of Carangidae (Carangiformes) was revealed by DNA barcoding collected from the traditional fish markets in Java and Bali, Indonesia

##plugins.themes.bootstrap3.article.main##

SAPTO ANDRIYONO
https://orcid.org/0000-0002-2566-1636
MD. JOBAIDUL ALAM
LAKSMI SULMARTIWI
A. SHOFY MUBARAK
HERU PRAMONO
SUCIYONO
GDE RAKA ANGGA KARTIKA
ALFI HERMAWATI WASKITA SARI
SINAR PAGI SEKTIANA

Abstract

Abstract. Andriyono S, Alam MJ, Sumartiwi L, Mubarak AS, Pramono H, Suciyono, Kartika GRA, Sari AHW, Sektiana SP. 2022. The diversity of Carangidae (Carangiformes) was revealed by DNA barcoding collected from the traditional fish markets in Java and Bali, Indonesia. Biodiversitas 23: 2799-2806. Biodiversity has been utilized in various ways, including in fulfilling the protein needs of fish for coastal communities. For the island of Java, with the largest population in Indonesia, the intensive fisheries in the Java Sea are sufficient to support domestic food needs. This Carangid fish diversity study in Java is the beginning to identify commercial fish in Indonesia, which have been exploited for a long time. In this study, identification was carried out molecularly in the Cytochrome c oxidase subunit I (COI) gene region with the universal primary set and found a great variety of Carangids fish species. Thirty-three fish specimens have been identified, indicating two suborder groups, Caranginae (31) and Scomberoidenae (2). The Caranginae suborder group is more dominated with the most types of which are Megalaspis cordyla (3), Atule mate (3), and Decapterus macarellus (4). Meanwhile, the Scomberoidinae suborder is Scomberoides commersonnianus and Scomberoides tala. This study also found two species that have the potential to be ciguatera poisoning agents that need to be watched out for (Decapterus macarellus and Selar crumenophthalmus). Food safety in the fisheries sector has received considerable attention for a long time. Fishery commodities in highly polluted habitats are among the chains in increasing heavy metals concentration and the other residual chemical compounds that may impact human health.

##plugins.themes.bootstrap3.article.details##

References
Ahmad F, Dewanti LP, Arnenda GL, Rizal A. 2019. Length-weight relationship and catch size of bigeye tuna (Thunnus obesus) landed in Benoa, Bali, Indonesia. World News of Natural Sciences 23: 34-42.
Alfian RL, Iskandar J, Iskandar BS, Ermandara DP, Mulyanto D, Partasasmita R. 2020. Fish species, traders, and trade in traditional market: Case study in Pasar Baru, Balikpapan City, East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity 21.
Aquilino SV, Tango JM, Fontanilla IK, Pagulayan RC, Basiao ZU, Ong PS, Quilang JP. 2011. DNA barcoding of the ichthyofauna of Taal Lake, Philippines. Molecular Ecology Resources 11: 612-619.
Baldwin CC, Mounts JH, Smith DG, Weigt LA. 2009. Genetic identification and color descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa 2008: 1-22.
Bohlke JE, Chaplin CC. 1993. Fishes of the Bahamas and adjacent tropical waters: University of Texas Press.
Chodrijah U, Hariati T. 2017. Musim penangkapan ikan pelagis kecil di Laut Jawa. Jurnal Penelitian Perikanan Indonesia 16: 217-233.
Firdaus M. 2019. Profil Perikanan Tuna dan Cakalang di Indonesia. Buletin Ilmiah Marina Sosial Ekonomi Kelautan dan Perikanan 4: 23-32.
Froese R. 2009. FishBase. world wide web electronic publication. http://www. fishbase. org.
Hajibabaei M, Singer GA, Hebert PD, Hickey DA. 2007. DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. TRENDS in Genetics 23: 167-172.
Handy SM, Deeds JR, Ivanova NV, Hebert PD, Hanner RH, Ormos A, Weigt LA, Moore MM, Yancy HF. 2011. A single-laboratory validated method for the generation of DNA barcodes for the identification of fish for regulatory compliance. Journal of AOAC International 94: 201-210.
Hebert PD, Ratnasingham S, De Waard JR. 2003a. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: S96-S99.
Hebert PD, Cywinska A, Ball SL, Dewaard JR. 2003b. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 313-321.
Heemstra PC. 1993. Groupers of the world (Family Serranidae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO species catalogue 16.
Khatami AM, Yonvitner Y, Setyobudiandi I. 2018. Tingkat kerentanan sumberdaya ikan pelagis kecil berdasarkan alat tangkap di perairan Utara Jawa. Tropical Fisheries Management Journal 2: 19-29.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution 33: 1870-1874.
Lakra WS, Goswami M, Gopalakrishnan A. 2009. Molecular identification and phylogenetic relationships of seven Indian Sciaenids (Pisces: Perciformes, Sciaenidae) based on 16S rRNA and cytochrome c oxidase subunit I mitochondrial genes. Molecular Biology Reports 36: 831-839.
Laroche W. 1984. Carangidae: development. Ontogeny and systematics of fishes. Am. Soc. Ichthyol. Herpetol.
Lohman DJ, de Bruyn M, Page T, von Rintelen K, Hall R, Ng PK, Shih H-T, Carvalho GR, von Rintelen T. 2011. Biogeography of the Indo-Australian archipelago. Annual Review of Ecology, Evolution, and Systematics 42.
Lubis E, Pane AB, Fatoni K. 2019. Kebutuhan Ikan Bahan Baku Industri Pindang di Pelabuhan Perikanan Pantai Tasik Agung Rembang 10: 193-204.
Mertha IGS, Nurhuda M, Nasrullah A. 2017. Perkembangan perikanan tuna di Pelabuhanratu. Jurnal Penelitian Perikanan Indonesia 12: 117-127.
Mohsin AKM, Ambak MA. 1996. Marine fishes and fisheries of Malaysia and neighbouring countries.
Nainggolan H, Rahmantya K, Asianto A, Wibowo D, Wahyuni T, Zunianto A, Ksatrya S, Malika R. 2019. Kelautan dan Perikanan dalam Angka Tahun 2018 [Marine and fisheries in figures, 2018]. Jakarta, Ministry Of Marine Affairs And Fishries, Republic Of Indonesia.
Nurani TW, Lubis E, Haluan J, Saad S. 2017. Analysis of fishing ports to support the development of tuna fisheries in the South Coast of Java. Indonesian Fisheries Research Journal 16: 69-78.
Purwangka F, Mubarok HA. 2018. Komposisi Ikan Hasil Tangkapan Menggunakan Cantrang di Selat Madura. ALBACORE 2.
Randall JE. 1995. Coastal fishes of Oman: University of Hawaii Press.
Randall JE, Allen GR, Steene RC. 1997. Fishes of the great barrier reef and coral sea: University of Hawaii Press.
Ratnasingham S, Hebert PD. 2007. BOLD: The Barcode of Life Data System (http://www. barcodinglife. org). Molecular ecology notes 7: 355-364.
Wiadnya D, Damora A, Tamanyira M, Nugroho D, Darmawan A. 2018. Performance of rumpon-based tuna fishery in the Fishing Port of Sendangbiru, Malang, Indonesia. Pages 1-6. The 2nd International Symposium on Marine and Fisheries Research.
Yusuf R, Arthatiani FY, Maharani H. 2018. Kinerja ekspor tuna indonesia: suatu pendekatan analisis bayesian. Jurnal Kebijakan Sosial Ekonomi Kelautan dan Perikanan 7: 39-50.

Most read articles by the same author(s)