Exploration, screening and identification of indigenous yeast from some palm juices for bioethanol production




Abstract. Widyaningrum T, Febrianti N, Prastowo I, Saifuddin MF, Permadi A. 2022. Exploration, screening and identification of indigenous yeast from some palm juices for bioethanol production. Biodiversitas 23: 3984-3990. The major energy sources usually employed are originated mainly from fossil which can run out. Therefore, the creation of ecologically beneficial and long-lasting forms of alternative energy sources, such as bioethanol, is an absolutely necessary. This study aimed to explore, screen and to identify indigenous yeasts from some palm juices for bioethanol production. The isolates were screened in coconut water media for the degree of bioethanol production, the content of reducing sugar based on a DNS method, and the cell number based on optical density (600 nm). Furthermore, identification was performed using ITS and candidates of the highest bioethanol-producing ability including A3A, A11E from Arenga pinnata, K1C1, K1A, K2C from Cocos nucifera L., N3E, N3D, N1A from Nypa fruticans, S1A, and S2D from B. flabellifer L were obtained. The respective bioethanol contents were 13.4%, 12.8%, 13%, 16%, 14.2%, 13.2%, 12%, 12.6%, 14.4%, and 13.35%. The results showed that the isolates of A3A and N3E were similar to those of Pichia deserticola CBS 7119T. Meanwhile, the isolates of K1A and S1A were similar to that of Pichia manshurica CBS 240T and Candida tropicalis ZA 021T.


Agbogbo, F. K., and G. Coward-Kelly. 2007. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnology Letters, 30: 1515-1524.
Ali, M. N., K. M. Mazharuddin, and M. Majid. 2011. Ethanol fuel production through microbial extracellular enzymatic hydrolysis and fermentation from renewable agrobased cellulosic wastes. International Journal of Pharma and Bio Sciences, 2: 321-331.
Apriwinda. 2013. Study of fermentation of sweet sorghum stem (Sorghum bicolor (L) Moench) for ethanol production. Undergraduate Thesis. University of Hasanudin, Makassar, South Sulawesi, Indonesia.
Aung, W., Y. Watanabe, and F. Hashinaga. 2012. Isolation and phylogenetic analysis of two thermotolerant, fermentative yeast strains from liquid tapé ketan (Indonesian rice wine). Food Science and Technology Research, 18: 143-148.
Balan,V., D. Chiaramonti, and S. Kumar. 2013. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels, Bioproducts, and Biorefining, 7: 732-759.
Bharathiraja B., J. Jayamuthunagai, R. Praveenkumar, J. VinothArulraj, P. Vinoshmuthukumar, and A. Saravanaraj. 2014. Bioethanol Production from Lignocellulosic Materials - An Overview. The Scitech, 1: 28-36.
Blanco, P., J. M. Mirás-Avalos, and I. Orriols. 2012. Effect of must characteristics on the diversity of Saccharomyces strains and their prevalence in spontaneous fermentations. Journal of Applied Microbiology, 112: 936–944.
Borines, M. G., R. L. de Leon, and L. C. Joel. 2013. Bioethanol production from the macroalgae Sargassum spp. ?Bioresource Technology, 138: 22–29.
Chairul, and S.R. Yenti. 2013. Making bioethanol from palm juice of nypa using Sacharomyces cereviceae. Jurnal Teknobiologi, IV: 105-108.
Charoenchai, C., G. H. Fleet, and P. A. Henschke. 1998. Effects of temperature, pH and sugar concentration on the growth rates and cell biomass of wine yeasts. American Journal of Enology and Viticulture, 49: 283–288.
Cot, M., M. O. Loret, J. Francois, and L. Benbadis. 2007. Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. FEMS Yeast Research, 7: 22–32.
Elkins, K. M. 2013. Forensic DNA Biology. Sampling Biological Evidence for DNA Extraction. Cambridge, Massachusetts, USA: Academic Press.
Goldemberg, J. 2006. The promise of clean energy. Energy Policy, 34(1): 2185–2190.
Hadi, S., Thamrin, S. S. Moersidik, and S. Bahry. 2013. Characteristics and potential bioethanol from nira nipah (Nypa fruticans) scale application for appropriate technology. Jurnal Ilmu Lingkungan, 2: 291-293.
Hanif, M., T. M. I. Mahlia, H. B. Aditiya, and M. S. Abu Bakar. 2017. Energy and environmental assessments of bioethanol production from Sri Kanji 1 cassava in Malaysia. Biofuel Research Journal, 13: 537-544.
Herkert, P. F., R. R. Gomes, M. D. Muro, R. L. Pinheiro, G. Fornari, V. A. Vicente, and F. Queiroz-Telles. 2015. In vitro susceptibility and molecular characterization of Candida spp. from candidemic patients. Revista Iberoamericana de Micología, 32: 221–228.
Hoekman, S. K. 2009. Biofuels in the US-challenges and opportunities. Renewable Energy, 34: 14–22.
Jackson, B., and T. Jayanthy. 2014. Determination of sucrose in raw sugarcane juice by microwave method. Indian Journal of Science and Technology, 7: 566-570.
John, R. P., G. S. Anisha, K. M. Nampoothiri, and A. Pandey. 2011. Micro and macroalga biomass: a renewable source for bioethanol. Bioresource Technology, 102: 186–193.
Kiran, B., R. Kumar, and D. Deshmukh. 2014. Perspectives of microalgal biofuels as a renewable source of energy. Energy Conversion and Management, 88: 1228–1244.
Kismurtono, M. 2012. Fed-batch alcoholic fermentation of palm juice (Arenga pinnata Merr): influence of the feeding rate on yeast, yield and productivity. International Journal of engineering and technology, 5: 795-799.
Lin, Y., W. Zhang, C. Li, K. Sakakibara, S. Tanaka, and H. Kong. 2012. Factors affecting ethanol fermentation using Saccharomyces cerevisiae BY4742. Biomass & Bioenergy, 47: 395–401.
Liu, R., and F. Shen. 2008. Impacts of main factors on bioethanol fermentation from stalk juice of sweet sorghum by immobilized Saccharomyces cerevisiae (CICC 1308). ?Bioresource Technology, 99: 847–854.
Mulyatni, A. S., A. Priyatmojo, and A. Purwantara. 2011. Internal Transcribed Spacer (ITS) sequences of ribosomal DNA Oncobasidium theobromae and other related fungi as comparison. Menara Perkebunan, 79: 1-5.
Naknean, P., M. Meenune, and G. Roudaut. 2010. Characterization of palm sap harvested in Songkhla Province, Southern Thailand. International Food Research Journal, 17: 977-986.
Narendranath, N. V., and R. Power. 2005. Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Journal of Applied & Environmental Microbiology, 71: 2239-2243.
Ogbonda, K. H., and D. B. Kiin-Kabari. 2013. Effect of temperature and pH on ethanol production by a Blastomyces species isolated from the intestine of oil palm weevil (Rhynchophorus palmarum, Coleoptera). African Journal of Biotechnology, 12: 588-591.
Ouoba L. I., C. Kando, C. Parkouda, H. Sawadogo-Lingani, B. Diawara, and J. P. Sutherland. 2012. The Microbiology of Bandji, palm wine of Borassus akeassii from Burkina Faso: identification and genotypic diversity of yeasts, lactic acid and acetic acid bacteria. Journal of Applied Microbiology, 113: 1428-1441.
Phisalaphong, M., N. Srirattana, and W. Tanthapanichakoon. 2010. Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochemical Engineering Journal, 28: 36–43.
Rahmawati, A. 2010. Utilization of Cassava Skin Waste (Manihot utilissima Pohl.) and Pineapple Skin (Ananas Comosus L.) on Bioethanol Production using Aspergillus Niger. Undergraduate Thesis. Sebelas Maret University, Surakarta, Indonesia.
Rani, P., S. Sharma, F. C. Garg, K. Raj, and L. Wati. 2010. Ethanol production from potato flour by Saccharomyces cerevisiae. Indian Journal of Science and Technology, 3: 733-736.
Ravikumar, S., R. Gokulakrishnan, M. Kanagavel, and N. Thajuddin. 2011. Production of biofuel ethanol from pretreated seagrass by using Saccharomyces cerevisiae Indian Journal of Science and Technology, 4: 1087-1089.
Riyanti, E. I. 2011. Some genes in bacteria that responsible for bioethanol production. Jurnal Litbang Pertanian, 30: 41-47.
Saputra, D. R., A. Ridlo, and I. Widowati. 2012. Study of seaweed Sargassum duplicatum J. G. Agardh as producer of bioethanol by acid hydrolysis and fermentation process. Journal of Marine Research, 1: 145-151.
Shafiee, S., and E. Topal. 2009. When will fossil fuel reserves be diminished. Energy Policy, 37: 181–189.
Shamim, R. A., S. M. K. Islam, I. M. Rafiqul, H. Khaled, N. Kamrun, R. C. Kumar, U. MdEkhlas, and C. Naiyyum. 2016. Isolation of yeasts from raisins and palm-juice and ethanol production in molasses medium. Indian Journal of Science and Technology, 9: 1-8.
Srivastava, A. K., P. Agrawal, and A. Rahiman. 2014. Delignification of rice husk and production of bioethanol. The International Journal of Innovative Research in Science, Engineering and Technology, 3: 10187-10194.
Tomomatsu, A., T. Itoh, C. H. Wijaya, Z. Nasution, J. Kumendong, and A. Matsuyama. 1996. Chemical constituents of sugar-containing sap and brown sugar from palm in Indonesia. Japanese Journal of Tropical Agriculture, 40: 175-181.
Tuntiwongwanich, S., and B. Leenanon. 2009. Morphology and identification of yeasts isolated from toddy palm in Thailand. Measurement Science and Technology, 23: 34-37.
Umamaheswari, M. 2010. Bioethanol production from cellulosic materials. Asian Journal of Science and Technology, 1: 005-011.
Wardani, A. K., and F. N. E. Pertiwi. 2013. Ethanol production from sugarcane drops by Saccharomyces cerevisiae forming flok (Nrrl – Y 265). Agritechnology, 33: 131-139.
Wijaya, I. M. A. S., I. G. K. A. Arthawan, and A. N. Sari. 2012. Potential of coconut nira as bioethanol raw material. Bumi Lestari Earth Journal, 12: 85-92.
Widyaningrum, T., I. Prastowo, M. Parahadi, and A. D. Prasetyo. 2016. Production of bioethanol from the hydrolysate of brown seaweed (Sargassum crassifolium) using a naturally ?-glucosidase producing yeast Saccharomyces cereviceae JCM 3012. Biosciences Biotechnology Research Asia, 13: 1333-1340.
Zabed, H., G. Faruq, J. N. Sahu, M. S. Azirun, R. Hashim, and A. N. Boyce. 2014. Bioethanol production from fermentable sugar juice. Scientific World Journal, 2014: 1–11.

Most read articles by the same author(s)