The influence of inoculum types on the chemical characteristics and b-glucan content of tempe gembus

##plugins.themes.bootstrap3.article.main##

SAMSUL RIZAL
MARIA ERNA KUSTYAWATI
MURHADI
MUHAMAMAD AMIN

Abstract

Abstract. Rizal S, Kustyawati ME, Murhadi, Amin M. 2023. The influence of inoculum types on the chemical characteristics and b-glucan content of tempe gembus. Biodiversitas 24: 793-798. Tempe gembus is a type of tempe which is made by fermenting tofu dregs with Rhizopus oligosporus. Tempe gembus has lower nutritional value than soybean tempe. Adding Saccharomyces cerevisiae to manufacture tempe gembus is expected to increase the added value of tempe gembus. The aim of this study was to determine the effect of various types of inoculums on the chemical properties and b-glucan content of tempe gembus. The study used a completely randomized block design (RBD) with 3 repetitions and 7 types of inoculums: commercial tempe inoculum (RAPRIMA) (T1), S. cerevisiae (T2), R. oligosporus (T3), commercial tempe inoculum (RAPRIMA) + commercial yeast (Fermipan) (T4), commercial tempe inoculum (RAPRIMA) + S. cerevisiae (T5), R. oligosporus + Fermipan (T6), and R. oligosporus + S. cerevisiae (T7). Tempe gembus produced was analyzed for the content of fat, protein, ash, water, carbohydrates, and b-glucan. The data obtained was analyzed statistically using one way ANOVA and the Honest Significant Difference (HSD) test. The results showed that the type of tempe inoculum increased the levels of protein, ash, water and b-glucan but decreased the levels of fat and carbohydrates in tempe gembus. A mixture of R. oligosporus and S. cerevisiae produced the best tempe gembus containing 0.69% ?-glucan, 6.98% protein, 0.48% ash, 83.98% water, 8.12% carbohydrates and 0.47% fat.

##plugins.themes.bootstrap3.article.details##

References
Andarwulan N, Kusnandar F, Herawati. 2011. Analisis Pangan. Dian Rakyat. Jakarta. 442 Hal.
AOAC. 2016. Official Methods of Analysis Association of Official Analytical Chemists 20th edition. Benjamin Franklin Station. Washington DC.
Asmoro NW. 2016. Influence of inculum type on content folic acid in fermentation of black soybean tempe mallica variety. Jurnal Ilmiah Teknosains. 2(1): 66-72. https://doi.org/10.26877/jitek.v2i1/Mei.1017
Damanik RNS, Pratiwi DYW, Widyastuti N, Anjani G, Afifah DN. 2018. Nutritional Composition Changes During Tempe Gembus Processing. IOP Conference Series: Earth and Environmental Science. 116 (2018) 012026. DOI:10.1088/1755-1315/116/1/012026.
Dewi IWR, Anam C, Widowati E. 2014. Sensory characteristic, nutrient value and antioxidant activities of pigeon pea tempe (Cajanus cajan) and cow pea tempe (Vigna unguiculata) with variations of fermentation time. Biofarmasi. 12(2): 73-82. DOI: 10.13057/biofar/f120204.
Di Domenico J, Canova R, Soveral LF, Nied CO, Costa MM, Frandoloso R, Kreutz LC. 2017. Immunomodulatory effects of dietary ?-glucan in silver catfish (Rhamdia quelen). Pesquisa Veterinária Brasileira. 37(1), 73-78.
Dietrich MA, Olas B, Kontek B, Rabe, J. J., 2011. Beta-glucan from Saccharomyces cerevisiae reduces plasma lipid peroxidation induced byhaloperidol. International Journal of Biolog¬ical Macromolecules. 49: 113-116
Efriwati A. Suwanto G. Rahayu, Nuraida L. 2013. Populations dinamic of yeast and lactic acid bacteria (LAB) during tempe production. Hayati Journal of Biosciences 20(2) : 57-64. DOI: 10.4308/hjb.20.2.57.
Fakruddin, Hossain N, Ahmed MM. 2017. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae ifst062013, a potential probiotic. BMC Complemet Alten Med. 17:64. DOI: 10.1186/T12906-017-1591-9.
Febriani NLC, Suparthana IP, Wiadnyani AAIS. 2019. The effect of fermentation time pigeon pea (cajanus cajan l.) on the characteristics of “Sere Undis”. Jurnal Ilmu dan Teknologi Pangan. 8(2): 181-188. https://doi.org/10.24843/itepa.2019.v08.i02.p08
Jay MJ. 2001. Modern Food Microbiology, Fifth Edition. International Thomson Publishing. New York.
Kusmiati, Swasono R, Tamat S, Nuswantara, Isnaini N. 2007. Production and determination of b-glucan content from three Saccharomyces cerevisiae strains in molasses containing media. Jurnal Ilmu kefarmasian Indonesia. 5 (1) : 7-16. http://jifi.farmasi.univpancasila.ac.id/index.php/jifi/article/view/582
Kustyawati ME. 2009. Study on the role of yeast in tempe production. Agritech. 29(2): 64-70. https://doi.org/10.22146/agritech.9765
Kustyawati ME, Pujiastuti P. 2018. Who Produces Vitamin B12 In Tempe. International Conference on Green Agro-Industry and Bioeconomy. Malang, Indonesia.
Lee JN, Lee DY, Ji IH, Kim GE, Kim HN, Sohn J, Kim S, Kim CW. 2001. Purification of soluble beta-glucan with immune-enhancing activity from the cell wall of yeast. Bioscience, Biotechnology, and Biochemistry. 65, 837. https://doi.org/10.1271/ bbb.65.837.
Malianti L, Sulistiyowati E, Fenita Y. 2019. Profil asam amino dan nutrien limbah biji durian (Durio zibethinus Murr) yang difermentasi dengan ragi tape (Saccharomyces cerevisiae) dan ragi tempe (Rhizopus oligosporus). Jurnal Penelitian Pengelolaan Sumberdaya Alam dan Lingkungan. 8(1): 59-66. https://doi.org/10.31186/naturalis.8.1.9167
Murdiati A, Sardjono, Amaliah. 2016. The different of chemical composition of tempe Gembus produced by addition of rice bran to the raw material. Agritech. 20(2): 106-110. https://doi.org/10.22146/agritech.13698
Pratiwi LD. 2018. Study of Microorganism Growth Kinetics and ?-Glucan Content During Tempe Fermentation with the Addition of Saccharomyces cerevisiae. (Tesis). University of Lampung. Bandar Lampung.
Rizal S, Kustyawati ME, Suharyono AS, Suyarto VA. 2022. Changes of nutritional composition of tempe during fermentation with the addition of Saccharomyces cerevisiae. Biodiversitas 23 (3): 1553-1559.DOI: 10.13057/biodiv/d210639.
Rizal S, Murhadi, Kustyawati ME, Hasanudin U. 2020. Growth optimization of Saccharomyces cerevisiae and Rhizopus oligosporus during fermentation to produce tempe with high ?-glucan content. Biodiversitas 21 (6): 2667-2673. DOI:10.13057/biodiv/d210639.
Rizal S, Kustyawati ME. 2019. Characteristics of sensory and ?-glucan content of soybean tempe with addition of Saccharomyces cerevisiae. Jurnal Teknologi Pertanian. 2(20) : 127-138. https://doi.org/10.21776/ub.jtp.2019.020.02.6
Rizal S, Kustyawati ME, Murhadi, Hasanudin U. 2021. The growth of yeast and fungi, the formation of ß-glucan, and the antibacterial activities during soybean fermentation in producing tempe. International Journal of Food Science. 2021: 1-8. DOI: 10.1155/2021/6676042
Seredynski R, Wolna D, Kedzior M, Gutowicz J. 2016. Different patterns of extracellular proteolytic activity in W303a and BY4742 Saccharomyces cerevisiae Strains. Journal of Basic Microbiology. 56: 1-7. https://doi.org/10.1002/jobm.201600228
Sudarmadji S, Haryono B, Suhardi. 2010. Prosedur Analisa untuk Bahan Makanan dan Pertanian Edisi Keempat. Liberty. Yogyakarta. Hal 69.
Treichel H, Oliveira D, Mazutti MA, Luccio MD, Oliveira JV. 2010. A review on microbial lipases production. Food Bioprocess Technol. 3: 182-196. DOI: 10.1007/T11947-009-0202-2.
Wijayanti VO. 2021. Comparative Study of Antioxidant Activity in Tempe with Various Types of Inoculums. [Tesis]. University of Lampung Bandar Lampung. Hal 26-31.

Most read articles by the same author(s)