The selection index of S3 corn convergent breeding population based on multivariate analysis




Abstract. Makmur, Farid M, Ala A, Mandja K, Anshori MF, Fadhilah AN. 2024. The selection index of S3 corn convergent breeding population based on multivariate analysis. Biodiversitas 25: 1097-1103. Corn is one of the most important and strategic food crops in the world, including Indonesia. Increasing corn production through a plant breeding program by assembling hybrid varieties begins with developing a convergent breeding population and index selection. The research aims to identify genetic variance and the effectiveness of selection indices in selecting high-yield S3 cross populations. The research was carried out in Rea Village, Binuang Sub-District, Polewali Mandar District, West Sulawesi from July to November 2022. The research used an augmented design with four blocks. Sixty-six lines were derived from 4 double cross populations and 8 populations of the S3 generation multiple-cross population, as well as 9 check varieties (NK7328, Pioneer 36, Bisi 18, Bisi 2, NK99, Nasa 29, JH45, Bisi 9, and NK212) were used in this study. The results indicate that the length of cobs (5.98;73.59%), length of seed cobs (7.06; 79.46%), weight of 100 seeds (7.75; 89.30%), and weight of seeds per cob (7.84; 65.59%) have moderate genetic variance and high heritability. The characteristics of stem diameter, yield percentage, and weight of seed per cob were effectively used in the selection index formulation. Based on the index selection, there were 14 potential corn lines with a good performance, recommended for the next hybridization stage.


Acquaah G. 2015. Conventional plant breeding principles and techniques. In Advances in plant breeding strategies: Breeding, biotechnology and molecular tools (pp. 115-158). Springer, Cham. DOI: 10.1007/978-3-319-22521-05.
Amas ANK, Hardiansyah MY, Musa Y, Amin AR. 2021. Selection of several hybrid maize (Zea mays L.) genotypes under low nitrogen condition. IOP Conf. Ser: Earth and Env Sci 807, 032014. DOI: 10.1088/1755-1315/807/3/032014.
Amas ANK, Musa Y, Farid M, Anshori MF. 2023. Genetic characteristics of F2 populations obtained through double and three-way crosses in cayenne peppers. SABRAO J Breed Genet 55 (2): 309-318. DOI: 10.54910/sabrao2023.55.2.4.
Amzeri A, Badami K, Khoiri S, Umam AS, Wahid N, Nurlaella S. 2020. Morphological character, heritability, and selection index of some F1 generations of Melon (Cucumis melo L.). Agro Journal 7 (1): 42-51. DOI: 10.15575/6244.
Anshori MF, Purwoko BS, Dewi IS, Ardie SW, Suwarno WB. 2019. Selection index based on multivariate analysis for selecting doubled-haploid rice lines in lowland saline prone area. SABRAO J Breed Genet 51: 161-174. ISSN: 1029-7073.
Anshori MF, Purwoko BS, Dewi IS, Ardie SW, Suwarno WB. 2021. A new approach to select doubled haploid rice lines under salinity stress using indirect selection index. Rice Sci 28: 368-378. DOI: 10.1016/j.rsci.2021.05.007.
Anshori MF, Purwoko BS, Dewi IS, Suwarno WB, Ardie SW. 2022. Salinity tolerance selection of double-haploid rice lines based on selection index and factor analysis. AIMS Agric Food 7(3): 520-535. DOI: 10.3934/agrfood.2022032.
Azizah E, Setyawan A, Kadapi M, Yuwiah Y, Ruswandi D. 2017. Identification of the morphology and agronomy of Unpad hybrid corn in intercropping with black rice in the Arjasari highlands, West Java. Cultivation Journal 16 (1): 1-8. DOI: 10.24198/kltv.v16i1.11718.
Fadhilah AN, Farid M, Ridwan I, Anshori MF, Yassi A. 2022. Genetic parameters and selection index of high-yielding tomato F2 populations. . SABRAO J Breed Genet 54(5): 1026-1036. DOI: 10.54910/sabrao2022.54.5.6.
Fadli M, Farid M, Yassi A, Nasaruddin, Anshori MF, Nur A, Suratman. 2022. Evaluation of the advanced yield trial on tropical wheat (Summer wheat L.) mutant lines using selection index and multivariate analysis. Biodiversitas 23(1): 540-547. DOI: 10.13057/biodiv/d230158.
Farid M, Nasaruddin, Musa Y. 2021. Effective screening of tropical wheat mutant lines under hydroponically induced drought stress using multivariate analysis approach. Asian J Plant Sci. 20: 172-182. DOI: 10.3923/ajps.2021.172.182.
Farid M, Anshori MF, Ridwan I, Dungga NE, Ermianti I. 2022. Half diallel of F1 tomato hybrid and its double cross-compatibility. Biodiversitas 23(4): 1813-1821. DOI: 10.13057/biodiv/d230413.
Fellahi ZEA, Hannachi A, Bouzerzour H. 2018. Analysis of direct and indirect selection and indices in bread wheat (Summer wheat L.) segregating progeny. Int J Agron 8312857: 1-11. DOI: 10.1155/208/8312857.
Gazal A, Nehvi FA, Lone AA, Dar ZA, Wani MA. 2017. Smith hazel selection index for the improvement of maize inbred lines under water stress conditions. Int J Pure App Biosci 5 (1): 72-81. DOI: 10.18782/2320-7051.2444.
Hapsari RT. 2014. Estimation of genetic diversity and correlation between yield and components of early maturing Mung Beans. Germplasm Bulletin 20 (2): 51-58. DOI: 10.21082/blpn.v20n2.2014.p51—58.
Hidayatullah A, Purwoko BS, Dewi IS, Suwarno WB. 2018. Agronomic performance and yield of doubled haploid rice lines in advanced yield trial. SABRAO J Breed Genet 50(2): 42-53.
Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR. 2015. MAGIC populations in crops: current status and future prospects. Theor Appl Genet. DOI 10.1007/s00122-015-2506-0
Jambormias E, Sutjahjo SH, Mattjik AA. 2015. Transgressive segregation analysis of multiple traits in mungbean (Vigna radiata L. Wilczek). SABRAO J Breed Genet 47(2): 201-213.
Khapte PS, Jansirani P. 2014. Genetic variability and performance studies of tomato (Solanum tomato L.) genotypes for fruit quality and yield. Trends in Biosci 7(12): 1246-1248.
Litrico I, Violle C. 2015. Diversity in Plant Breeding: a New Conceptual Framework. Trends Plant Sci 20(10): 604-613. DOI: 10.1016/j.tplants.2015.07.007.
Luitel BO, Yoon CS, Surendra Y, Kang WH. 2013. Correlation and path analysis for fruit yield and quality characters in segregating population of mini paprika (Capsicum annuum L.). J Agri Life Environ Sci. 25: 1-7.
Magar BT, Acharya S, Gyawali B, Timilsena K, Upadhayaya J, Shrestha J. 2021. Genetic variability and trait association in maize (Zea mays L.) varieties for growth and yield traits. Heliyon 7 (9): 1-8. DOI: 10.1016/j.heliyon.2021.e07939.
Masuka B, Magorokosho C, Olsen M, Atlin GN, Benziger M, Pixley KV, Cairns JE. 2017. Gains in maize genetic improvement in Eastern and Southern Africa: II. CIMMYT open?pollinated variety breeding pipeline. Crop Sci 57(1): 180-191. DOI: 10.2135/cropsci2016.05.0343.
Maurya RK, Singh AK, Sai A. 2020. Correlation and path analysis in tomato (Solanum lycopersicum L.) for yield and yield contributing traits. J Pharmacognosy Phytochem 9 (3): 1684-1687. DOI: 10.22271/phyto.2020v9.j3ab.11555.
Mawikere NL, Sarungallo AS, Aribowo DA, Gultom E. 2015. Phenotypic performance of eight genotypes of Manokwari-local corn produced by inbreed linesof first-generation. Agrotech J 4(7): 1-8. DOI: 10.30862/agrotek.v4i7.128
Mustafa M, Syukur M, Sutjahjo SH, Sobir. 2019. Inheritance study for fruit characters of tomato ipbt78 x ipbt73 using joint scaling test. IOP Conf Ser Earth Environ. Sci. 382: 012009. DOI: 10.1088/1755-1315/382/1/012009.
Namdev SK, Rahul D. 2018. Correlation and path analysis in tomato. Res J Agric Sci 9 (3): 588-590. DOI: 4950-2002-2018-127.
Nevani S, Sridevi O. 2021. Correlation and path coefficient analysis in tomato (Solanum lycopersicum L.). The Pharma Innov J 10 (7): 1522-1525. ISSN: 2349-8242.
Padjung R, Farid M, Musa Y, Anshori MF, Nur A, Masnenong A. 2021. Drought-adapted maize line based on morphophysiological selection index. Biodiversity 22(9): 4028-4035. DOI: 10.13057/biodiv/d220951.
Panchbhai JR, Kulkarni GB. 2023. Correlation and path analysis studied of some genotypes in tomato (Solanum lycopersicum L.). The Pharma Innov J 12 (7): 679-684.
Pavlov J, Delic N, Markovic K, Crevar M, Camdzija Z, Stevanovic M. 2015. Path analysis for morphological traits in maize (Zea mays L.). Genetics 47 (1): 295-301. DOI: 10.2298/GENSR1501295P.
Peternelli LA, Moreira EFA, Nascimento M, Cruz CD. 2017. Artificial neural networks and linear discriminant analysis in early selection among sugarcane families. Crop Breed Appl Biotechnol 17: 299-305. DOI: 10.1590/1984-70332017v17n4a46.
Pranay G, Shashibhushan D, Rani KJ, Bhadru D, Kumar CVS. 2022. Correlation and path analysis in elite maize (Zea mays L.) lines. Int J Plant Soil Sci 34 (24): 414-422. DOI: 10.9734/IJPSS/2022/v34i242657.
Priyanto SB, Serealia BPT, Azrai M, Serealia BPT, Syakir M. 2018. Analysis of genetic variance, heritability, and agronomic characteristics of single cross hybrid corn. Informatika Pertanian 27(1): 1 – 8. DOI: 10.21082/ip.v27n1.2018.p1-8.
Ramos HCC, Pereira MG, Viana AP, Da Luz LN, Cardoso DL, Ferreguetti GA. 2014. Combined selection in backcross population of papaya (Load Papaya L.) By The Mixed Model Methodology. Amer. J. Plant Sci. 5: 2973-2983. DOI: 10.4236/ajps.2014.520314.
Rosyidah NN, Damanhuri, Respatijarti. 2016. Selection of F3 populations in tomato plants (Edible tomatoMill.). Jurnal Produksi Tanaman 4(3): 231-239. DOI: 10.21176/protan.v4i3.286
Simeao R, Adriane S, Cacilda V, Marcos DR, Sergion M. 2015. Genetic evaluation and selection index in tetraploid brachiaria ruziziensis. Plant Breed 135 (2): 246-253. DOI: 10.1111/pbr.12353.
Singh AK, Solankey SS, Akhtar S, Kumari P, Chaurasiya J. 2018. Correlation and path coefficient analysis in tomato. Int J Curr Microbiol App Sci 7: 4278-4285. ISSN: 2319-7706.,%20et%20al.pdf
Siswati A, Basuki N, Sugiharto AN. 2015. Characterization of several inbred lines of feed corn (Zea mays L.). Jurnal Produksi Tanaman 3(1): 19 –26.
Syukur M., Sujiprihati S, Yunianti R. 2015. Plant breeding techniques. Self-Help Spreader, Jakarta.
Tsagaye D, Andargachew G, Shimelis A. 2022. Correlation and path analysis in tomato (Lycopersicum esculentum Mill) genotypes. Eco Evo Biology 7 (3): 46-53. DOI: 10.11648/j.eeb.20220703.12
Wulan W, Nawang P. 2017. Decrease in rigidity(inbreeding depression) in the f1, s1 and s2 generations of the corn plant population (Zea mays L.). Jurnal Produksi Tanaman 5(3). 521 – 530.