Molecular characteristic on intra-species of Metroxylon sagu from Papua, Indonesia by nad2 and matK genes




Abstract. Abbas B, Mawikere NL, Tjolli I, Arsyad M, Munarti. 2021. Molecular characteristic on intra-species of Metroxylon sagu from Papua, Indonesia by nad2 and matK genes. Biodiversitas 22: 5302-5310. Sago palm (Metroxylon sagu Rottb.) is a palm that is capable accumulated a lot of starch for food in the trunk. The molecular characterization of sago palm is very important as identities of biological existence in the certain areas. This study aimed to reveal molecular characteristic on intra-species of M. sagu from Papua based on NADH dehydrogenase subunit 2 (nad2) gene and maturase K (matK) gene. 15 accessions were used in this study. Sequences of nad2 gene on some accessions of M. sagu were shown that no differences. The nad2 gene on some accessions of M. sagu was inferred only one haplotype and the matK gene were inferred two haplotypes. The highest frequencies of the nucleotide in both nad2 and matK gene were calculated thymine (T). The amino acid leucine was the most common, accounting for 11.44% of haplotype-1 and 11.50% of haplotype-2. The amino acids alanine, cysteine, and methionine have the lowest rates, with 1.99% for haplotype-1 and 2.00% for haplotype-2. The evolutionary relationships were shown no mutation rates occur in the nad2 gene and lower mutation rates occur in the matK gene on M. sagu. Based on the genotype-2 (Sagu01, Sagu02, Sagu08, Sagu12, and Sagu15) is proposed to be new variety.


Abbas B. 2015. Sago commodity as a pillar of food sovereignty that needs to be managed and developed wisely as well as sustainably for community welfare. Scientific Oration for the inauguration of Professor in the University of Papua, Manokwari. [Indonesian]
Abbas B. 2018. Sago palm genetic resource diversity in Indonesia. In: Ehara H, Toyoda Y, Johnson D. (eds.). Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods. Springer, Singapore. DOI: 10.1007/978-981-10-5269-9_5
Abbas B, Bintoro MH, Sudarsono, Surahman M, Ehara H. 2009. Genetic relationship of sago palm (Metroxylon Sagu Rottb.) in Indonesia based on RAPD markers. Biodiversitas 10(4):168-174
Abbas B, Kabes RJ, Mawikere NL, Ruimassa RMR, Maturbong RA. 2020b. DNA barcode of Metroxylon sagu and others palm species using matK gene. Biodiversitas 21(9):4047-4057. DOI:10.13057/biodiv/d210916.
Abbas B, Paisey EK, Dailami M, Munarti. 2017. Assessment of genetic arrangement of sago palm collection based on mitochondrial nad2 gene Marker. Proceeding of the 13th International Sago Symposium, Kuching Sarawak, Malaysia, 2-6 Oktober 2017.
Abbas B, Tjolli I, Dailami M, Munarti. 2019. Phylogenetic of sago palm (Metroxylon sagu) and others monocotyledon based on mitochondrial nad2 gene markers. Biodiversitas 20 (8): 2249-2256. DOI: 10.13057/biodiv/d200820
Abbas B, Tjolli I, Munarti. 2020a. Genetic diversity of sago palm (Metroxylon sagu) accessions based on plastid cpDNA matK gene as DNA barcoding. Biodiversitas 21 (1): 219-225. DOI: 10.13057/biodiv/d210128.
Amini ZN, Olson KE, Müller UF. 2014. Spliceozymes: Ribozymes that Remove Introns from Pre-mRNAs in Trans. PLoS ONE 9(7): e101932.
Boesch, P., N. Ibrahim, F. Paulus, A. Cosset, V. Tarasenko, A. Dietrich. 2009. Plant mitochondria possess a short-patch base excision DNA repair pathway. Nucleic Acids Research 37(17): 5690-5700.
Brooks DJ, Fresco JR, Lesk AM, Singh M. 2002. Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol Biol Evol19(10):1645-55..doi:10.1093/oxfordjournals. molbeva003 988.
Castro JA, Picornel A, Ramon M. 1998. Mitochondrial DNA: a tool for population genetic studies. Internal Microbial 1:327-332
Chase MW, Cowan RS, Hollingsworth PM, Berg CVD, Madrin'an S, Petersen G, Seberg O, Jorsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M. 2007. A proposal for a standardized protocol to barcode all land plants. Taxon 56: 295-299.
Chauhan V, Kumari V, Kanwar SS. 2020, Comparative analysis of amino acid sequence diversity and physiochemical properties of peroxidase superfamily. J Protein Res Bioinform 2:003
Chen ZD, Yang T, Lin L, Lu LM, Li HL, Sun M, Liu B, Chen M, Niu YT, Ye JF, Cao ZY, Liu H, Wang XM, Wang W, Zhang JB, Meng Z, Cao W, Li JH, Wu SD, Zhao HL, Liu ZJ, Du ZY, Wang QF, Guo J, Tan XX, Su JX, Zhang LJ, Yang LL, Liao YY, Li MH, Zhang GQ, Chung SW, Zhang J, Xiang KL, Li RQ, Soltis DE, Soltis PS, Zhou SL, Ran JH, Wang XQ, Jin XH, Chen YS, Gao TG, Li JH, Zhang SZ, Lu AM. 2016. Three of life for the genera of Chinese vascular plants. J Syst Evol 54 (4): 277-306. DOI: 10.1111/jse.12219
Christensen AC. 2013. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms. Genome Biol. Evol. 5(6):1079–1086. doi:10.1093/gbe/evt069
Darracq A, Varre JS, Drouard LM, Courseaux A, Castric V, Laprade PS, Oztas S, Lenoble P, Barbe B, Touzet P. 2011. Structural and content diversity of mitochondrial genome in beet: A comparative genomic analysis. Genome Biol Evol 3: 723-736. DOI: 10.1093/gbe/evr042
Dye, MJ and Proudfoot NJ. 2001. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II. Cell 105: 669-681.
Duminil J, Pomonge MH, Petit RJ. 2002. A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Molecular Ecology Notes 2:428-430
Eksomtramage T, Duangpan S. 2018. Genetic variation of improved oil palm tenera hybrid populations using morphological and SSR markers. Songklanakarin J Sci Technol 40 (6): 1329-1335. DOI: 10.14456/sjst-psu.2018.163
Geneaid (2012) Genomic DNA mini kit (plant) protocol.
Genievskaya Y, Abugalieva S, Zhubanysheva A, Turuspekov Y. 2017. Morphological description and DNA barcoding study of sand rice (Agriophyllum squarrosum, Chenopodiaceae) collected in Kazakhstan. BMC Plant Biol 17 (1): 177-185. DOI 10.1186/s12870-017-1132-1.
Gorissen SHM, Crombag JJR, Senden JMG, Waterval WAH, Bierau J, Verdijk LB, Loon LJCV. 2018. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids. 2018; 50(12): 1685–1695. doi: 10.1007/s00726-018-2640-5
Green P, Ewing B, Miller, W., Thomas PJ, Green, E.D. 2003. Transcription-associated mutational asymmetry in mammalian evolution. Nat. Genet. 33: 514-517.
Harnelly E, Thomy Z, Fathiya N. 2018. Phylogenetic analysis of Dipterocarpaceae in Ketambe Research Station, Gunung Leuser National Park (Sumatra, Indonesia) based on rbcL and matK genes. Biodiversitas 19 (3): 1074-1080. DOI: 10.13057/biodiv/d190340
Hollingsworth PM, Graham SW, Little DP. 2011. Choosing and using a plant DNA barcode. PLoS One 6 (5): e19254. DOI: 10.1371/journal.pone.0019254
Jo BS, Choi SS. 2015. Introns: The Functional Benefits of Introns in Genomes. Genomics Inform. 2015 Dec; 13(4): 112–118. doi: 10.5808/GI.2015.13.4.112
Kar P, Goyal A, Sen A. 2015. Maturase K gene in plant DNA barcoding and phylogenetics. Lambert Academic Publishing, Saarbruken.
Kaye FJ, Kratzke RA, Gerster JL, Horowitz JM. 1990. A single amino acid substitution results in a retinoblastoma protein defective in phosphorylation and oncoprotein binding. Proc Natl Acad Sci USA 87(17):6922-6. doi: 10.1073/pnas.87.17.6922.
Kitazaki K, Kubo T. 2010. Cost of Having the Largest Mitochondrial Genome: Evolutionary Mechanism of Plant Mitochondrial Genome. Journal of Botany 2010:1-12,
Kuzmina ML, Johnson KL, Barron HR, Herbert PDN. 2012. Identification of vascular plants of Churchill, Manitoba, using a DNA barcode library. BMC Ecol 12 (25): 1-11. DOI: 10.1186/1472-6785-12-25.
McCullough AJ, Schuler MA. 1997. Intronic and exonic sequences modulate 5? splice site selection in plant nuclei. Nucleic Acids Research 25(5):1071–1077,
Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA. 2008. Database Indexing for Production MegaBLAST Searches", Bioinformatics 24:1757-1764.
Morley SA, Nielsen BL. 2017. Plant mitochondrial DNA. Front Biosci.1(22):1023-1032.
Mower JP, Tauzet P, Gummow J, Delph LF, Palmer JD. 2007. Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evolutionary Biology 7(135):1-14
Pervaiz T, Sun X, Zhang Y, Tao R, Zhang J. 2015. Association between chloroplast and mitochondrial DNA sequences in Chinese Prunus genotypes (Prunus persica, Prunus domestica, and Prunus avium). BMC Plant Biology. Vol 15(4):
Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG. 2005. Comparative organization of chloroplast, mitochondrial, and nuclear diversity in plant populations. Molecular Ecology 14:689-701
Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powel W. 1999. A low mutation rate for chloroplast microsatellites. Genetics 153: 943-947.
Riyanto R, Widodo I, Abbas B. 2018. Morphology, growth and genetic variations of sago palm (Metroxylon sagu) seedlings derived from seeds. Biodiversitas 19 (2): 602-608. DOI: 10.13057/biodiv/d190241
Saddhe AA, Jamdade AR, Kumar K. 2016. Assessment of mangroves from Goa, West Coast India using DNA barcode. SpringerPlus 5 (1): 1554-1564. DOI: 10.1186/s40064-016-3191-4
Savolainen V, Corbaz R, Moncousin C, Spchiger R, Manen JF. 1995. Chloroplast DNA variation and parentage analysis in 55 apples. Theor Appl Genet 90: 1138-1141.
Selvaraj D, Sarma RK, Sathishkumar R. 2008. Phylogenetic analysis of chloroplast matK gene from Zingiberaceae for plant DNA barcoding. Bioinformation 3(1): 24-27.
Singh J, Banerjee S. 2018. Utility of DNA barcoding tools for conservation and molecular identification of intraspecies of rice genotypes belonging to Chhattisgarh using rbcL and matK gene sequences. Plant Arch 18: 69-75.
Tamura K., Nei M., and Kumar S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences (USA) 101:11030-11035.
Tamura K., Stecher G., and Kumar S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution
Viard F, El-Kassaby YA, Ritland A. 2001. Diversity and genetic structure in populations of Pseudotsuga menziesii (Pinaceae) at chloroplast microsatellite loci. Genome 44: 336-344.
Wulandari EF, Mawikere NL, Abbas B. 2021. Morphology and Genetic diversity of sago palm accessions (Metroxylon Sagu Rottb.) based on matK gene marker [Indonesian]
Yamamoto Y. 2011. State of the art sago research in Asia Pacific. Proceeding of the 10th International Sago Symposium, October 29-30, 2011, Bogor, Indonesia.
Yater T, Tubur HW, Meliala C, Abbas B. 2019. Short Communication: A comparative study of phenotypes and starch production in sago palm (Metroxylon sagu) growing naturally in temporarily inundated and non-inundated areas of South Sorong, Indonesia. Biodiversitas 20 (4): 1121-1126. DOI:10.13057/biodiv/d200425
Zebua LI, Gunaedi T, Budi IM, Lunga N. 2019. The DNA barcode of red fruit pandan (Pandanaceae) cultivar from Wamena, Papua Province, Indonesia based on matK gene. Biodiversitas 20 (11): 3405-3412. DOI: 10.13057/biodiv/d201138
Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences, J Comput Biol 2000 7(1-2):203-14.

Most read articles by the same author(s)