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Abstract. Kalbi S, Fallah A, Hojjati SM. 2014. Using and comparing two nonparametric methods (CART and RF) and SPOT-HRG 

satellite data to predictive tree diversity distribution. Nusantara Bioscience 6: 57-62. The prediction of spatial distributions of tree 

species by means of survey data has recently been used for conservation planning. Numerous methods have been developed for building 

species habitat suitability models. The present study was carried out to find the possible proper relationships between tree species 

diversity indices and SPOT-HRG reflectance values in Hyrcanian forests, North of Iran. Two different modeling techniques, 

Classification and Regression Trees (CART) and Random Forest (RF), was fitted to the data in order to find the most successful model. 

Simpson, Shannon diversity and the reciprocal of Simpson indices were used for estimating tree diversity. After collecting terrestrial 

information on trees in the 100 samples, the tree diversity indices were calculated in each plot. RF with determinate coefficient and 

RMSE from 56.3 to 63.9 and RMSE from 0.15 to 0.84 has better results than CART algorithms with determinate coefficient 42.3 to 63.3 

and RMSE from 0.188 to 0.88. Overall the results showed that the SPOT-HRG satellite data and nonparametric regression could be 

useful for estimating tree diversity in Hyrcanian forests, North of Iran. 
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INTRODUCTION 

Forest management and farming, along with natural 

disturbances like wildfire, storms, and floods have caused 

widespread land use changes and landscape fragmentation 

(Ramezani and Holm 2010). These processes may have 

resulted in biodiversity losses, environmental functions and 

ecological processes which generate and maintain soil, 

convert solar energy into plant tissue, regulate climatic 

parameters and provide multiple forest products (Isik et al. 

1997).  

Hyrcanian forests are the individual natural ecosystem 

that enjoys the highest plants and animals diversity 

comparing with other ecosystems in Iran. They are being 

destroyed by degradation and conversion to other land 

uses. Under pressure to make informed management 

decisions rapidly, conservation practitioners must 

increasingly rely on predictive models to provide them with 

information on species distributions (Loiselle et al. 2003; 

Saatchi et al. 2000). The most accurate ways to collect 

biographical data on species distributions are intensive 

ground surveys or inventories of species in the field. 

However, remote sensing offers a cost-efficient means for 

deriving complete spatial coverage of environmental 

information for large areas in a consistent manner. Recent 

studies have indicated that remote sensing may be able to 

provide useful information on biodiversity (Hernandez-

Stefanoni and Dupuy 2007; Mohammadi and Shataee 2010). 

Dogan and Dogan (2006) tested the predictability of 

several biodiversity indices such as Shannon’s diversity, 

Simpson and richness using spatial predictor variables. 

These variables are topography, geology, soil, climate, 

normalized difference vegetation index (NDVI), and land 

cover. They offered three models for Shannon’s diversity, 

Simpson, and richness indices. Mohammadi and Shataee 

(2010) investigated the possibility of estimation of tree 

diversity using Landsat ETM+ data in the Hyrcanian 

forests, North of Iran.  

The models for tree species richness and the reciprocal 

of the Simpson index were obtained with reasonable 

accuracy. Bawa et al. (2002) reported that there is a 

statistically significant relation between the species 

diversity and NDVI of IRS 1C imagery and NDVI may be 

used to characterize areas of high and low tree species 

richness in tropical forests where biodiversity losses are 

significant. The regression analysis approach has broadly 

been applied in ecological surveys (Lehmann et al. 2002). 

Linear regression is a commonly used statistical technique 

for modeling biodiversity because of its easy use and direct 

interpretability (Curt et al. 2001; Seynave et al. 2005). The 

development of advanced nonparametric and machine 

learning techniques are opening up plenty of opportunities 

for modeling biodiversity with greater accuracy and may be 

better fitted to address the mentioned problems compared 

with linear regression (Aertsen et al. 2010).  

Generalized linear models (McCullagh and Nelder 

1989) and generalized additive models (Hastie and 

Tibshirani 1990) using presence-absence survey data have 

been taken much more attention recently. Moisen and 

Frescino (2002) investigated the performance of non-

parametric techniques as CART, generalized additive 

models (GAM) and artificial neural networks (ANN) 
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compared to parametric techniques for the prediction of 

several species independent forest characteristics in the 

interior Western United States. MARS and ANN worked 

best to simulated data, but less suitable for real data, in 

which case a LM approach often provided comparable 

results. Shataee et al. (2012) compared three nonparametric 

models include k-nearest neighbor (k-NN), support vector 

machine regression (SVR) and tree regression based on 

random forest (RF), for estimation forest structure 

characteristic using ASTER satellite data. Overall, they 

showed RF produced has better results than SVR and k-NN.  

The aim of this study was to compare and evaluate two 

statistical non-parametric (CART, RF) for modeling tree 

species diversity. It is also intended to investigate the 

relationship between the properties of satellite image 

spectral bands and tree species diversity; in order to predict 

the distribution of plant species diversity using new 

nonparametric methods over the study area. 

MATERIALS AND METHODS 

Study area 

The study area is located in the Hyrcanian forests, the 

district 1 of Darabkola’s forests, Sari, North of Iran (Figure 

1). The boundary of this area is located at 36° 28´-36° 33´ 

N and 53° 16´-53° 20´ 30´´ W. The Darabkola’s forestry 

plan, with about 2600 ha area, consists of natural temperate 

and uneven-aged stands. The main tree species are Quercus 

Castaneifolia (chestnut-leaved oak), Carpinus betulus 

(hornbeam), Acer velutinum (velvet maple), Alnus 

subcordata (Caucasian alder), Tilia begonifolia (linden 

tree), Parrotia persica (Persian ironwood), Ulmus glabra 

(elm), Acer platanoides (Norway maple), Diospyros lotus 

(date pulm), Zelkova carpinifolia (Siberian elm), Fagus 

orientalis (Oriental beech) and Acer cappadocicum 

(coliseum maple). 

Field data 

Species richness and diversity indices are dependent on 

the size of the sample plot. Phytosociological data were 

collected based on a systematic sampling method from 5th 

June to 15th July 2010. The size and the number of 

quadrats were determined using the species-area curve 

(Misra 1968). Choosing the sample size, the number of 

sampling units to select and measure, is a key part of 

planning a survey. 100 sample plots (quadrate shape) were 

placed using a stratified random sampling design 450 × 500 

m. The sample plot size was 60 × 60 m and characteristics 

of trees with DBH more than 7.5 cm were measured. The 

geographical center of each plot was registered using a 

GPS Oregon 550.  

Diversity indices 

A large number of diversity indices can be used to 

characterize tree size diversity within a stand (Smith et al. 

1992; Varga et al. 2005; Ozdemir et al. 2008). Two 

common approaches for measuring alpha diversity are 

species richness and evenness/ heterogeneity (Ojo and Ola-

Adams 1996). Species richness simply refers to the number 

of species in the community while evenness/ heterogeneity 

refers to the distribution of individuals among the species. 

In this study, species richness wasn't considered. For the 

measurement of evenness/ heterogeneity, Simpson, 

Shannon diversity indices and the reciprocal of the 

Simpson index were computed for each of the sites. The 

more uncertainty one has about the species of an 

individual, the higher the diversity of the community. The 

proportion of a species has been based on a variety of 

variables to represent frequency, including the number of 

individuals (Niese and Strong 1992; Condit et al. 1996), 

basal area (Harrington and Edwards 1995; LeMay et al. 

1997), stems per ha (McMinn 1992; Harrington and Edwards 

1995); and biomass (Swindel et al. 1984). In this study, the 

proportion of basal area species is used in this index. 

Satellite data 

The SPOT-HRG data were orthorectified using 23 

GCPs and DEM. The total root mean square errors (RMSE) 

were obtained about 0.67 for visible and near infra bands 

and 0.5 for the middle infra band. Pixel size of middle band 

was resized to 10m using nearest-neighbor resampling 

method. The geometric precision of the images was also 

verified using road vector layer and unused collected GPS 

control points and proved the accuracy of geometric 

rectification. In order to atmospheric correction, the COST 

general method was used for decreasing of effect of 

attenuation and scattering in the visible and near-infrared 

bands. The DNs of images were converted to radiance and 

then to reflectance values. The reflectance of the haze 

number was determined through the histogram evaluation. 

Image processing techniques 

After geometric rectification and atmospheric 

corrections, the most used vegetation indices were 

generated for probabilistic capabilities of these indices in 

regression modeling (Table 1). Also used of mean and 

variance each four bands and principal component analyses 

for all bands and three bands. 

Spectral signature extraction of the plot 

The pixel sizes of all used images were aggregated to 

60 meters according to size of field plots (60×60) and their 

spectral values were averaged. Then the averaged values of 

main and processed images of SPOT-HRG were extracted 

in place of each plot. 

Statistical models 

Classification and regression tree 

Classification and regression tree, a statistical procedure 

introduced by Breiman et al. (1984), is primarily used as a 

classification tool, where the objective is to classify an 

object into two or more populations (Lee et al. 2006). 

Regression trees, while effective at incorporating disparate 

data types, non-normal distributions, and non-linear 

relationships, do not allow for tree optimization, and 

accuracy may suffer in the presence of outliers and non-

balanced datasets (Lawrence et al. 2004; Barrett et al. 

2010). Regression trees are hierarchical structures, where 

the internal nodes contain tests on the input attributes. Each   
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Figure 1. Location of the study area in the Mazandaran Province (a) and allocation of sample plots (b) in the study area. 

 

 

Table 1. Most importance Spectral vegetation indices examined in this study. 

 

Index  Equation Reference 

Normalized Ratio (NR) Red-NIR   Mohammadi et al. (2010  

Simple Ratio (SR) 

 

Birth and McVey (1968) 

Difference Vegetation Index (DVI) NIR-Red Tucker (1979) 

Modified Soil Adjusted Vegetation Index (MSAVI2) 
NIR + 0.5  

Qi et al. (1994) 

Normalized difference vegetation index(NDVI)  (NIR-RED) /(NIR+RED) Rouse et al. (1973) 

Short wave infrared to visible ratio (SVR) SWIR/[(RED+GRN)/2] Wolter et al. (2008) 

Moisture stress index (MSI)  SWIR/NIR Rock et al. (1986) 

Reduced Simple Ratio (RSR) 

 

Brown et al. (2000) 

Renormalized Difference Vegetation 

Index (RDVI) 
 Roujean and Breon (1995) 

Normalized difference water index (NDWI) NIR-SWIR/NIR+SWIR Gao (1996) 

Global environmental monitoring index (GEMI) 

η(1-0.25η)  

η=  

Pinty and Verstraete (1992) 

Note: SWIRmin and SWIRmax are the minimum and maximum reflectance values observed in the corresponding pixels in field plots.  
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branch of an internal test corresponds to an outcome of the 

test, and the prediction for the value of the target attribute 

is stored in a leaf. Each leaf of a regression tree contains a 

constant value as a prediction for the target variable (Kocev 

et al. 2009). The resulting prediction of the tree is taken 

from the leaf at the end of the path.  

Random forest 

Random forest is a novel ensemble classifier; it uses a 

similar but improved method of bootstrap as bagging 

(Zhang et al. 2009). It uses the strategy of a random 

selection of a subset of predictors to grow each tree, where 

each tree is grown on a bootstrap sample of the training set. 

This number, m, is used to split the nodes and is much 

smaller than the total number of variables available for 

analysis (Breiman 2001). In training, the random forest 

algorithm creates multiple CART-like trees (Breiman et al. 

1984), each trained on a bootstrapped sample of the 

original training data, and searches only across a randomly 

selected subset of the input variables to determine a split 

(for each node). Random forests for regression are formed 

by growing trees depending on a random vector such that 

the tree predictor takes on numerical values. However, 

when constructing a tree, random forest searches for only a 

random subset of the input features (bands) at each splitting 

node and the tree is allowed to grow fully without pruning 

(Chan and Paelinckx 2008). The random forests predictor 

is formed by taking the average over a number of the trees 

specified by the user (Lariviere and van den Poel 2005).  

The number of predictors used to find the best split at 

each node is a randomly chosen subset of the total number 

of predictors (Prasad et al. 2006). One of the main 

parameters which should be determined in RF is a k 

predictor (independent variables) in each node for 

predicting dependent values (response). The response of 

each tree depends on a set of predictor values, which is 

independently chosen with replacement and with the same 

distribution of all trees in the forest, which is a subset of 

the predictor values of the original data set. The simplest 

choosing way k is calculation of root square of total 

independent variables (k ≤ √m, m is the number of input 

variables). 

Model evaluation and performance assessment 

Data were randomly split into two data sets, 70% of the 

data for modeling and 30% for testing. For each model that 

was tested, four statistics are reported; these are the squared 

coefficient of determination (R2) (Pearson, 1896) and 

adjusted coefficient of determination (adjusted R2). The 

validity of performances was examined using regression 

diagnostics metrics, i.e., root means square error (RMSE), 

relative RMSE, bias, and relative bias, and using the 

independent and unused 30 samples. In addition to, some 

common graphical diagnostic tools (McRoberts 2009) were 

used to illustrate the quality of performances. 

 

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where est is estimated values from implementation of 

algorithms in m validation samples, obs is observation 

values and m is the number of validation samples. 

RESULTS AND DISCUSSION 

Descriptive statistics of indices 

Simpson, Shannon’s diversity indices and the reciprocal 

of Simpson index descriptive statistics for the proportion of 

basal area species is provided in Table 2. The value of 

Simpson, Shannon’s indices, and the reciprocal of the 

Simpson index ranged from 0.105 to 0.86, 0.12 to 2.89 and 

1.105 to 4.02, respectively. It indicates a wide range of tree 

species diversity in the study area (Table 2).  

All models were critically investigated for confounding 

factors and checked for all basic assumptions (Table 3). 

The number of predictor variables entering the models is 

ranging from three to five, while the predictor variables 

selected by each technique are not identical. 

The measures of performance are summarized for each 

model in Table 4. The best model performance was 

realized with highest R2, adjusted R2 and lowest RMSE, 

RMSEr Bias and Biasr values. In the total cases, the best 

goodness-of-fit, i.e., lowest values for RMSE and Bias and 

the highest adjusted R2, was obtained from the RF models.  

Discussion 

Hyrcanian forests comprise a diverse vegetation cover 

in the north of Iran and are increasingly degraded and 

converted to other land uses (Mohammadi et al. 2008). In 

this study, assessing utility SPOT5-HRG satellite images 

data and two different regression techniques for modeling 

tree diversity in Hyrcanian forest. These results are similar 

to those obtained in other studies (Foody and Cutler 2007; 

Hernandez-Stefanoni and Dupuy 2007; Mohammadi and 

Shataee 2010) where researchers demonstrated that satellite 

data can identify broad patterns of tree species diversity. 

In this study, the infrared index was determined to be 

very important to estimate the species diversity of trees and 

this wavelength was used due to the high reflection in the 

infrared spectrum (Bawa et al. 2002). Correlation 

coefficients between species diversity and range of values 

in different bands corresponding positive and reflects the 
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increasing range of different 

wavelengths, tree and shrub diversity 

also increased. The dense masses, in 

which there is more species diversity, 

reflect a large amount of the infrared 

spectral range, but in sparse masses, 

where the species diversity is low, 

reflected infrared is decreased 

because the red wavelength enters 

into the forest and spreads, which 

influences its absorption and 

ultimately reduces its reflection.  

Increasing the diversity and 

density of the canopy tree increases 

the rate of reflection in this range. 

With adjusted R2 values for the best 

models ranging from 42.8 to 64.5, 

the results look satisfactory 

compared to other studies 

(Mohammadi and Shataee 2010; 

Gillespie et al. 2009; Dogan and 

Dogan 2006). In recent years the RF 

algorithm has gained popularity as an 

effective regression method in the 

remote sensing domain (Shataee et 

al. 2012). The results of the present 

study confirm that the RF algorithm 

is a robust and accurate method for 

the modeling of satellite data.   

The robustness of the RF 

algorithm can be explained by the 

ability of the modeling and 

classification algorithm to exploit the 

noise in the dataset to create a more 

diverse classifier (Breiman 2001). In 

all cases, CART model has shown a 

poor result for modeling biodiversity. The results of this 

study have been consistent with some of previous studies 

(Moisen and Frescino 2002; Aertsen et al. 2010) that 

reported that CART models performed worst than 

nonparametric regressions. This may be owed to the fact 

that CART models produce a stepwise response function. 

In case of a rather smooth relationship between predictors 

and response, this can lead to low performance.  

CONCLUSION 

Tree diversity is one of the important properties that 

determine the vegetation needed to field measurements, the 

limits of its own and must determine which tools and 

methods to use auxiliary data such as satellite images data 

is used. Overall the results show that the SPOT-HRG data 

could be useful for estimating tree diversity and therefore 

can be employed to assess and monitor the status of tree 

diversity in the northeastern forests of Iran. 
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