Activity of *Zymomonas mobilis* on ethanol products made of cashew nut apple (*Anacardium occidentale*) with different sources of nitrogen

AKHMAD MUSTOFA1,2,*, SURANTO2

2 Bioscience Program, School of Graduates, Sebelas Maret University, Surakarta 57126, Central Java, Indonesia.


Abstract. Mustofa A, Suranto. 2009. Activity of *Zymomonas mobilis* on ethanol production made of cashew nut apple (*Anacardium occidentale*) with different sources of nitrogen. *Nusantara Bioscience* 1: 105-109. This research is aimed at identifying *Zymomonas mobilis* in producing ethanol through batch fermentation process (in 24, 48 and 72 hours) using cashew nut apple extract (red, green and yellow variety) and urea, ammonium sulfate, extract of green peanut sprout and extract koro (*Mucuna pruriens*) as sources of nitrogen. The research showed that green cashew nut extract with ammonium sulfate in 24 hours of fermentation produced ethanol in optimum result. This treatment had pH of 5.87, 7.64 g/100 mL of sugar (with 48.44% of consumption), 8.0x107 amount of bacterium (μ = 0.154) and production of ethanol equal to 33.02 g/L (Yi = 90.19%).

Keywords: *Zymomonas mobilis*, cashew nut juice extract, ethanol.

INTRODUCTION

There is 5,322 ha land in Yogyakarta used as an area to grow cashew nut apple, and Gunung Kidul is the largest one (60.38%). Meanwhile, in Central Java it covers 11,828.68 ha with Wonogiri covering equal to 7,059 ha. Both Gunung Kidul and Wonogiri produce 3,242.9 tons of nuts without its fruit (Darsono 2004). There are 200 nuts in 1 kg of the nuts of cashew nut apple, or 648,580,000 of nuts for 3,242.9 tons. It means there are about 194,574 tons of cashew fruit for that amount of nuts.

Cashew fruits are not widely utilized in Indonesia. Meanwhile, in Brazil from where it comes, people produce juices from the fruits. In India, it is widely used to make alcoholic beverage called *feni* (Van Eijnatten 1991). Cashew fruit contains 16.3% of carbohydrate that can be fermented into ethanol (Thomas 1989; Van Eijnatten 1991). Some researches indicate that *Saccharomyces cerevisiae* and *Zymomonas mobilis* ferment sugar from cashew fruit extract into ethanol (Hermawan et al. 2000; Sapariantin 2005). However, *Z. mobilis* is less frequently used than *S. cerevisiae* in ethanol products made of cashew. Pinheiro et al. (2008) and Neelakandan and Usharani (2009) indicate that cashew apple juice is a suitable substrate for *S. cerevisiae* yeast growth and ethanol production. Pacheco et al. (2009) and Rodrigues et al. (2009) showed that cashew apple bagasse is efficient support for cell immobilization aimed at ethanol production. While, Karuppaiya et al. (2009) showed the ability of *Z. mobilis* for alcohol production from cashew apple bagasse.

*Zymomonas mobilis*, a gram-negative bacterium, is considered as an alternative organism in large-scale fuel ethanol production (Gunasekaran and Raj 2002). *Z. mobilis* has some good characteristics for producing ethanol namely its higher sugar uptake and ethanol yield, lower biomass production, higher ethanol tolerance, not require controlled addition of oxygen during fermentation and its amenability to generic manipulations (Wijono 1988; Doelle 1990; Hobley and Pamment 1994; Nowak 2000).

Cashew fruit contains only 4.6% of protein (Thomas 1989; Van Eijnatten 1991), resulting in less nitrogen in which it is used for growth and metabolism production. For those reasons, it has been researched on producing ethanol from cashew apple extract (red, green and yellow variety) with *Z. mobilis* in 24, 48 and 72 hours of fermentation.
Urea, ammonium sulfate, green bean (*Phaseolus radiates*) sprout extract and koro (*Mucuna pruriens*) extract were added as sources of nitrogen.

**MATERIALS AND METHODS**

**Materials**

Cashew apples with red, yellow and green variety that have been used as the source of carbon were taken from Ngadirojo sub-district, Wonogiri district, Central Java. The added carbon source was glucose 7 g/100 mL of fermented media. The nitrogen sources were from urea, ammonium sulfate, *Phaseolus radiates* (green bean) sprout extract and *Mucuna pruriens* (koro) extract. *Z. mobilis* was taken from Food and Nutrient Microbiology Laboratory of Gadjah Mada University Yogyakarta. The chemicals needed in this research are MgSO$_4$·7H$_2$O 0.1% (b/v), anhydrous glucose, ammonium molybdate, H$_2$SO$_4$, Na$_2$HPO$_4$, Na$_2$CO$_3$, KNa, NaHCO$_3$, NaSO$_4$, CuSO$_4$·5H$_2$O, MgSO$_4$, and NaOH. The cashew extract was made from the blended juice and kept in a freezer (Hermawan et al. 2000).

**Ethanol fermentation**

The fermentation media (100 mL) consisted of cashew apple extract (red, yellow or green variety) with some amount of sugar about 7.44-7.82% (b/v), MgSO$_4$·7H$_2$O 0.1% (b/v) and glucose 7 g. The sources of nitrogen were urea 0.2 g/L, ammonium sulfate 0.443 g/L, *Phaseolus radiates* sprout extract 7.73 mL/L and *Mucuna pruriens* extract 9.25 mL/L. NaOH was added to keep the pH around 6. The fermentation media was sterilized at 121°C for 10 minutes. 6.10$^6$ cell/mL of *Z. mobilis* were used in this research.

The fermentation media consisted of cashew apple extract and different source of nitrogen was fermented for 24, 48 and 72 hours. The pH, consumption of sugar (Nelson-Somogyi) (Nelson 1944; Somogyi 1952), the amount of bacterium (Standard Plate Count) and ethanol production (Conway microdiffusion) (Conway and O'Malley 1942) were analyzed during the fermentation process.

**RESULT AND DISCUSSION**

**Ph level**

The pH level determines the process of fermentation due to the characteristic of the enzyme that only works in certain pH interval. This research showed that pH level decreased along the fermentation. The pH was set at 6 at the beginning of this research, as Worden et al. (1983) said that *Z. mobilis* grows well at 5.6-7.5 of pH. The changes in pH at Table 1 below showed the decrease of pH in each treatment. The decrease of pH was caused by contamination of other bacteria especially lactose acid bacteria. Although fermentation media has been sterilized but this contamination can still possibly happen (Rahayu dan Rahayu 1988). The research showed insignificant decrease of pH, 0.19 (1.7%). It indicates that the acid level formed was not significant. Theoretically, the formation of ethanol by *Z. mobilis* will not produce another element in which 1 mol of glucose produces 2 mol of ethanol and 2 mol CO$_2$.

<table>
<thead>
<tr>
<th>Cashew variety</th>
<th>Nitrogen source</th>
<th>Fermentation time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>Ammonium</td>
</tr>
<tr>
<td>Red</td>
<td>5.90</td>
<td>5.88</td>
</tr>
<tr>
<td>Yellow</td>
<td>5.91</td>
<td>5.87</td>
</tr>
<tr>
<td>Green</td>
<td>5.89</td>
<td>5.85</td>
</tr>
</tbody>
</table>

*Table 1. The data of pH changing in cashew fruit fermentation into ethanol by Zymomonas mobilis*

The data of pH changing in cashew fruit fermentation into ethanol by *Zymomonas mobilis* Table 1 show pH<sub>0</sub> was 6.01, which decreased to pH<sub>24</sub> 5.58 (Red), pH<sub>72</sub> 5.37 (Red) and pH<sub>48</sub> 5.33 (Green).

**Table 2. The data of sugar level (g/100 mL) changing in cashew fruit fermentation into ethanol by Zymomonas mobilis**

<table>
<thead>
<tr>
<th>Cashew variety</th>
<th>Nitrogen source</th>
<th>Fermentation time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>Ammonium</td>
</tr>
<tr>
<td>Red</td>
<td>9.29</td>
<td>8.33</td>
</tr>
<tr>
<td>Yellow</td>
<td>8.85</td>
<td>7.87</td>
</tr>
<tr>
<td>Green</td>
<td>8.61</td>
<td>7.64</td>
</tr>
</tbody>
</table>

*Table 2. The data of sugar level (g/100 mL) changing in cashew fruit fermentation into ethanol by Zymomonas mobilis*
radiatus sprout and M. pruriens extract.

The statistic test with Tukey’s method showed that the differences in the variety of cashew apples, nitrogen sources, and the duration of the fermentation influenced the pH of the media

The sugar level

The glucose from cashew fruit extract and the added sugar (7 g) were the sources of carbon for Z. mobilis that was then changed into ethanol and CO2. The amount of sugar before the fermentation was 7.44 g/100 mL for the red, 7.26 g/100 mL for the yellow and 7.82 g/100 mL for the green variety of cashew apple. Because of the lack of sugar (under 10 g/100 mL) in cashew apple, 7 g of glucose was added to each treatment. Körsop and Hilton (1981) suggested getting more economical fermentation by giving at least 10% of sugar fermentation media. The use of sugar by Z. mobilis was indicated in Table 2. The Table shows that there was a use of glucose as a carbon source. Up to the third day, hour 72, the highest use of sugar by Z. mobilis was in the treatment with ammonium sulfate. The high use was 65.12% for green variety, 62.67% for red and 58.42% for yellow.

The use of sugar was better compared to the similar research (The ethanol fermentation with cashew extract by Z. mobilis) by Sapariantin (2005) that only produced 33.83%, but compared to other research, the use of this sugar was low. Hermawan et al. (2000) reported the use of sugar 80-90% in a research of ethanol fermentation with cashew fruit extract by Saccharomyces cerevisiae. Another research with only glucose media was reported to use 98.6% of Z. mobilis (Nowak 2000). The low usage of reduced sugar by Z. mobilis was because of the usage of standard bacteria (as used by Sapariantin (2005), while Nowak (2000) used modified Z. mobilis namely strain 3881 dan 3883. It was also a possibility of contamination by other bacteria consuming the glucose.

Table 2 shows that the use of glucose by Z. mobilis was optimum by using ammonium of ammonium sulfate, 65.12% for green variety. Torres and Barrati (1988) stated that the best nitrogen source for Z. mobilis is yeast extract, ammonium sulfate and the mixture of them. It produces different amount for those using Saccharomyces cerevisiae for ethanol fermentation. For this microbe, the best nitrogen source is urea compared to ammonium sulfate (Hermawan et al. 2000). Table 2 also shows that the highest decrease of the sugar occurred in 0-24 hours, while after 24 hours the decrease was not high. Doelle (1990) stated that the optimum time of ethanol fermentation for Z. mobilis occurs in 24 to 34 hours.

The nitrogen source of extract P. radiatus sprout and extract of M. pruriens contain carbohydrate (4.1 g and 55 g respectively out of 100 g) meaning that both contribute sugar as carbon source for the bacteria. The big amount of the leftover of sugar from the media with extract of P. radiatus sprout and extract of M. pruriens could be caused by the bigger amount of the sugar in them compared to other media with different sources of nitrogen.

The statistic test of sugar changing with Tukey’s method shows that the differences of the cashew variety, nitrogen sources, and the duration of the fermentation impact the sugar level to the result of the fermentation

The amount of bacteria

The amount of bacteria gives huge impact of the success of a fermentation. The more amount of bacteria, the better fermentation will get. The amount of bacteria is also to cover up with the time needed for the adaptation toward the new media.

This research used Z. mobilis FNCC 056 with 6.10⁸ cell/mL for each treatment injected to 100 mL media to get 6.10⁶ cell/mL bacteria. The changing of the amount of bacteria is shown in Table 3. Table 3 shows that the use of ammonium sulfate influenced the growth of the bacteria. The average amount of bacteria with ammonium sulfate as the source of nitrogen showed the highest compared to other sources.

This research showed that the growth rate of specific µ

<table>
<thead>
<tr>
<th>Cashew variety</th>
<th>Nitrogen source</th>
<th>Fermentation time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>Amonium</td>
</tr>
<tr>
<td>Red</td>
<td>6.60</td>
<td>7.30</td>
</tr>
<tr>
<td></td>
<td>26.7</td>
<td>34.7</td>
</tr>
<tr>
<td></td>
<td>46.0</td>
<td>69.3</td>
</tr>
<tr>
<td>Yellow</td>
<td>6.80</td>
<td>7.70</td>
</tr>
<tr>
<td></td>
<td>28.7</td>
<td>35.3</td>
</tr>
<tr>
<td></td>
<td>49.7</td>
<td>63.0</td>
</tr>
<tr>
<td>Green</td>
<td>7.10</td>
<td>8.00</td>
</tr>
<tr>
<td></td>
<td>29.0</td>
<td>33.7</td>
</tr>
<tr>
<td></td>
<td>52.7</td>
<td>72.3</td>
</tr>
</tbody>
</table>

Table 3. The data of the amount of bacteria (x 10⁴) changing in cashew fruit fermentation into ethanol by Zymomonas mobilis

<table>
<thead>
<tr>
<th>Cashew variety</th>
<th>Nitrogen source</th>
<th>Fermentation time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>Amonium</td>
</tr>
<tr>
<td>Red</td>
<td>0.146</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>0.102</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>0.076</td>
<td>0.081</td>
</tr>
<tr>
<td>Yellow</td>
<td>0.147</td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td>0.103</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>0.077</td>
<td>0.080</td>
</tr>
<tr>
<td>Green</td>
<td>0.149</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>0.104</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>0.077</td>
<td>0.082</td>
</tr>
</tbody>
</table>

Table 4. The growth of Zymomonas mobilis on media for each variety of cashew
was indicating the speed of changing of microorganism growth. The more significant \( \mu \) value, the faster a microorganism grows. Counted every 24 hours from hour 0 to 72 the \( \mu \) value was got as it is shown in Table 4. The highest growth of bacteria was reached in the fermentation with ammonium sulfate as the nitrogen source and cashew of green variety. It showed \( \mu \) of 0.082/hour, and then red variety with 0.081 and yellow with 0.08 with the same nitrogen source. The Table also showed that even though there was always increase of the amount of bacteria at every hour but it also showed the decrease of \( \mu \) meaning that even though there was an increase of bacteria but there was also a decrease of the growth. This decrease was caused by the limited media so that in certain step the bacteria were competing in gaining nutrition causing the decrease of the bacteria’s growth.

The \( \mu \) in this research was higher than that in similar research by Sapariantin (2005). In her research, the \( \mu \) is 0.062 after hour 72. It is also higher than that of Gunasekaran and Raj (2002), namely 0.03 after hour 12. That was in fermentation of 12 hours that may change in the next period. The statistic test shows that there was a significant impact causing by different variety, nitrogen sources, and the duration of the fermentation toward the amount of bacteria.

### Ethanol level

The different nitrogen sources gave different impact toward the ethanol produced by the fermentation of cashew fruit extract with *Z. mobilis*. This research showed that the highest ethanol level gained in fermentation with ammonium sulfate as the nitrogen source and green variety namely 46.31 g/L and then red 43.24 g/L, yellow 38.57 g/L with the same nitrogen source. The result can be seen in Table 5.

The other nitrogen source producing high ethanol level is urea, and then *M. pruriens* extract and green bean sprout extract. It is similar with what is stated by Torres and Barrati (1990) that the best nitrogen source for *Z. mobilis* is yeast extract, ammonium sulfate or the mixture of them.

The green variety showed a good performance in gaining ethanol in this research. It was caused by the usage of sugar of the bacteria. It was shown by the sweetness of the green variety compared with other varieties shown in the reduced sugar level (5.1% higher than the red and 7.7% higher than the yellow).

Theoretically, the ethanol produced by *Z. mobilis* is 0.51 g for each gram of glucose given (Gunasekaran and Raj 2000). Therefore, if it uses 9.65 g/100 mL (Table 1), for the green with ammonium sulfate as the nitrogen source, it will produce 4.922 g/100 mL or 49.22 g/L ethanol. If it produces the highest, 46.31 g/L, it will gain yield ethanol 94.09%. It can be seen in Table 5. Another research showed ethanol level to 98% (Gunasekaran and Raj 2000), while Nowak (2000) reported that fermentation by *Z. mobilis with batch fermentation* got 96% and 94.5% of yield ethanol with continuous fermentation.

Table 5 shows that during hour 0 to 24 the increase in ethanol level was higher than between hour 24 to 48 or 72. As it is stated by Doelle (1990) that the time needed to produce ethanol by *Z. mobilis* is between 24 and 34 hours to gain optimum production. Therefore, it is advisable to conduct only 24 hours to produce ethanol from cashew fruit extract. The statistic test with Tukey showed that the ethanol from green variety was much different from other variety, while those of red and yellow variety were not significantly different. The usage of nitrogen source of ammonium sulfate gave significant impact to the ethanol production than those of other sources. While the production of ethanol by green bean sprout extract is not much different from those by *M. pruriens* extract. The duration of the fermentation also gave significant impact on the production. This research showed that though the production of ethanol with natural resources (*Phaseolus radiatus* sprout and *Macuna pruriens*) was not as high as those with urea and ammonium sulfate, they are potential to be used for its easy sources and the less residue and eco-friendliness.

### CONCLUSION

The green variety of cashew apple produced the highest ethanol than those of red and yellow variety. It also gave optimum production with ammonium sulfate in 24 hours. This treatment gave 33.02 g/L of ethanol or in other words gave 90.19% of ethanol’s yield.

---

**Table 5.** The data of ethanol level (g/L) and yield ethanol (%) changing in cashew fruit fermentation into ethanol by *Z. mobilis*.

<table>
<thead>
<tr>
<th>Cashew variety</th>
<th>Nitrogen source and yield ethanol (Ye)</th>
<th>Fermentation time (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>Ye</td>
</tr>
<tr>
<td>Red</td>
<td>23.05</td>
<td>87.77</td>
</tr>
<tr>
<td></td>
<td>25.78</td>
<td>89.13</td>
</tr>
<tr>
<td></td>
<td>29.03</td>
<td>89.86</td>
</tr>
<tr>
<td>Yellow</td>
<td>24.16</td>
<td>87.51</td>
</tr>
<tr>
<td></td>
<td>27.92</td>
<td>89.85</td>
</tr>
<tr>
<td></td>
<td>30.56</td>
<td>88.60</td>
</tr>
<tr>
<td>Green</td>
<td>27.70</td>
<td>87.42</td>
</tr>
<tr>
<td></td>
<td>31.03</td>
<td>90.11</td>
</tr>
<tr>
<td></td>
<td>35.44</td>
<td>90.04</td>
</tr>
</tbody>
</table>
REFERENCES


Rahayu ES dan Rahayu K. 1988. Alcoholic Beverage Processing Technology. Faculty of Agricultural Technology, Gadjah Mada University. Yogyakarta. [Indonesia]


Sapariantin E. 2005. Ethanol fermentation of juice pseudo-fruit cashew (Anacardium occidentale L.) by Zymomonas mobilis by the addition of urea. [Thesis S1]. Faculty of Mathematics and Natural Sciences, Sebelas Maret University. Surakarta. [Indonesia]


Wijono D. 1988. Evaluation of the kinetics process of ethanol fermentation by Zymomonas mobilis ZM 4. Inter-University Center for Food and Nutrition, Gadjah Mada University. Yogyakarta. [Indonesia]