Blood cholesterol levels of hypercholesterolemic rat (*Rattus norvegicus*) after VCO treatment

MARTI HARINI¹*, OKID PARAMA ASTIRIN²

¹Department of Biology, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Jl. Ir. Sutami 36a Surakarta 57126, Central Java, Indonesia. Tel./Fax.: +92-271-663375. *email: marti.harini@yahoo.com.

²Bioscience Program, School of Graduates, Sebelas Maret University, Surakarta 57126, Central Java, Indonesia

Abstract. Harini M, Astirin OP. 2009. Blood cholesterol levels of hypercholesterolemic rat (*Rattus norvegicus*) after VCO treatment. *Nusantara Bioscience* 1: 53-58. This study aims to determine the treatment effect of VCO on blood cholesterol levels in hypercholesterolemic white rats (*Rattus norvegicus* L.). This study used 25 male rats of Wistar strain divided into five treatment groups, namely: control, simvastatin (1.3 mL/270 g BW), cholesterol (9:1 lard), VCO 1 (1 mL/270 g BW), and VCO 2 (1.3 mL/270 g BW). Treatment was given orally. Total cholesterol, LDL, and HDL cholesterol levels were measured on days 1, day 14, and 28. Cholesterol data (total cholesterol, LDL, and HDL) were analyzed by ANOVA and followed by a contrast test at a significance level of 0.05. The results showed that treatment of VCO at different doses significantly affected the decrease in blood total cholesterol blood LDL levels, increasing blood HDL in the hypercholesterolemic white rat.

Keywords: cholesterol, atherosclerosis, VCO.

INTRODUCTION

Cardiovascular disease (CVD) is a degenerative disease that often occurs and becomes a major killer in industrialized countries. In Indonesia, the National Household Health Survey 1992 states CVD became the first rank as the cause of death to people over 40 years of age. A major cardiovascular disease of the productive age is coronary heart disease (CHD), which is closely related to atherosclerosis (Kalim et al., 1996). Atherosclerosis is the hardening of the arteries caused by the accumulation of cholesterol in the blood vessels due to the imbalance of influx - reflux of cholesterol (Prabowo et al., 1995). Hypercholesterolemia is a major risk factor for atherosclerosis that underlies CHD formation (Marinetti 1990; Wresdiyati 2006). The occurrence of CVD can be reduced by decreasing the formation of atherosclerosis by lowering cholesterol levels in the blood and increasing the concentration of high-density lipoprotein (High-Density Lipoprotein/HDL) (Nogrady 1992).

Early signs of atherosclerosis are the occurrence of injury on the blood vessel wall, especially endothelial, followed by the deployment of lymphocytes and monocytes, macrophage formation, lipid deposition, smooth muscle proliferation, and extracellular matrix synthesis. Various efforts to reduce cholesterol levels in the blood can be performed using chemical drugs containing compounds or lipid-lowering agents and traditional medicine. Therapies with traditional medicine are perceived to be cheaper, and the procedure is easier than synthetic chemical drugs.

Virgin Coconut Oil (VCO) or pure coconut oil is coconut oil produced from fresh coconut milk without heating or adding any materials. This virgin coconut oil contains 100% fat consisting of 92% saturated fatty acids, 6% monounsaturated fatty acids, and 2% polyunsaturated fatty acids. Saturated fatty acids in VCO are comprised of 90% medium-chain fatty acids and 10% long-chain fatty acids. In VCO, medium-chain fatty acids are dominated by lauric acid (C12), namely 45-55%. In the body of saturated fatty acid, this medium-chain is broken and is being used to
produce energy and is rarely stored as body fat or accumulates in the blood vessels. These fatty acids can be absorbed easily and quickly burned, and used as energy for metabolism, thus increasing metabolic activity, so it can help to protect the body from disease and accelerate healing (Enig 2001)

Empirically VCO is known to be beneficial to health. Among others, VCO consumed each day can boost immunity, prevent disease caused by infection of bacteria, fungi, and viruses, help overcome obesity, prevent heart disease atherosclerosis, and overcome cholesterol, diabetes, and cancer.

So far, there has been no solid foundation and scientific evidence about the VCO potential as an anticholesterolemic and anti-atherosclerosis agent. Based on this fact, researchers want to know the effect of VCO on hypercholesterolemia white rats' blood cholesterol levels, which is an early sign of atherosclerosis.

MATERIALS AND METHODS

Materials

In this study, the animals used were 25 male, white rats (Rattus norvegicus L.), Wistar strain, at the age of 2 months with a bodyweight of 250-290 g. They were obtained from LP3HP-LPPT Gadjah Mada University, Yogyakarta. Virgin Coconut Oil was from the Integrated Coconut Processing Center of Yogyakarta. Lard was from LP3HP-LPPT Yogyakarta. Simvastatin was a production of Kimia Farma. The food of the test animal was pelleted BR-II.

Procedures

Experimental animal. Before being used in the experiment, white rats were adapted for seven days to get used to the environment. Handling of experimental animals was in accordance with generally accepted protocol (Malole 1989).

Simvastatin dose determination. The dose used for human hypercholesterolemia is 10 mg/day. Doses of simvastatin were converted to Rattus norvegicus L based on Laurence and Bacharach conversion table cited by Haznam (1976). It gave a result of 10 mg/day x 0.018 = 0.18 mg/day/200 g BW. Simvastatin suspension was obtained by dissolving 0.18 mg of simvastatin in powder into 1 mL of distilled water. For rats weighing 270 g, 1.3 mL suspension of simvastatin was required.

Determination of dosage and VCO delivery. VCO given to human therapy is three tablespoons or equal to 45 mL/day (Dayrit 2000). When converted to rat, it was 0.018 X 45 = 0.81 mL/200 g BW/day or equal to 1.09 mL/270 g BW/day. In this study, dose variations were given, namely dose I = 1 mL/day/270 g BW and dose II = 1.3 mL/day/270 g BW.

Treatment of experimental animals. For measurement of blood cholesterol levels, this study used 25 male rats (Rattus norvegicus L.), which were grouped into five treatment groups, five mice for each, as follows:

- Group I: treatment of distilled water and pellets for 28 days (control)
- Group II: Treatment pellets and lard with ratio 9:1 for 14 days, then followed with Simvastatin until day 28th
- Group III: treatment of a mixture of pellets and lard with a ratio of 9: 1 for 14 days, continued with pellets and distilled water until day 28th
- Group IV: treated with a mixture of pellets and lard with a ratio of 9: 1 for 14 days, followed by VCO treatment with a dose of 1 mL until day 28th
- Group V: treated with a mixture of pellets and lard with a ratio of 9: 1 for 14 days, followed by VCO treatment with a dose of 1.3 mL up to 28 days

The provision of food and water was ad libitum, and VCO and Simvastatin treatment were given orally using a cannula needle. At the beginning of treatment and the end of their treatment, the weight loss of mice was weighed.

Determination of blood cholesterol levels. The Enzymatic Endpoint Method determines blood cholesterol levels with a spectrophotometer (Kayamori et al. 1999). Blood was taken from the orbital sinus by microhematocrit and then placed in a container. It was then dripped with heparin as an anti-coagulant on day 1st (after acclimation), on day 14th, and day 28th. The measurement of blood cholesterol contents was to all cholesterol contents, namely HDL and LDL. The contents of HDL and LDL were measured with precipitation and enzymatic method.

Data analysis

Quantitative data (total cholesterol content, LDL cholesterol, and HDL cholesterol) were analyzed by T dependent test to determine the effect of 10% of lard. While ANCOVA analyzed data for the treatment effect (Analysis co Variance), and when there were fundamental differences, a contrast test at a significance level of 5% continued to find out the differences among the treatments.

RESULTS AND DISCUSSION

This study used Wistar strain male white rats aged 2-3 months. Rats were used because they had similarities with physiology, anatomy, nutrition, pathology, and metabolism and were commonly used in research on cholesterol levels. Male rats are used because they are less affected by hormonal changes (Sitepoe 1992). According to Ganong (2002), estrogen affects blood cholesterol. In male rats, blood lipids are not affected by this estrogen because these animals have less estrogen.

This research went through several stages: acclimation of animals to adapt to the surrounding environment, providing a high-cholesterol diet, and treating with VCO. All rats have been given pellets, food, and drinking water ad libitum for seven days during acclimation. High-cholesterol diet by mixing the pellets food with lard at a ratio of 90:10 was given for 14 days. In VCO treatment, mice were given VCO for 14 consecutive days and used Simvastatin patented drug as the positive control. Parameters observed in this study were the content of total blood cholesterol, LDL cholesterol, and HDL cholesterol.
From the statistical tests, giving lard (ratio 9:1) in the food caused a significant increase (P < 0.05) on total blood cholesterol level for as high as 10.7%, LDL levels increased by 55.52%, and no significant decrease in levels of HDL cholesterol by 2.17%. This situation occurred due to increased accumulation of fat in the liver, resulting in an increasing number of acetyl Co-A in liver cells to produce cholesterol (Guyton 1991). Lard contains high saturated fatty acids. Triglyceride levels of saturated fat resulted in increased blood cholesterol and were a precursor. Consuming saturated fats may cause an increase in total cholesterol and a decrease of HDL, thereby increasing the ratio of total cholesterol and HDL, so the risk of atherosclerosis is greater (Baraas 1993). Overeating fat may cause hyperlipidemia with the increase of apo B cholesterol and LDL. The increase in apoB cholesterol is associated with decreased LDL receptor function (Verde et al. 1999).

Blood total cholesterol level

Cholesterol is present in all tissues and lipoproteins plasma. It exists in free cholesterol or a combination of long-chain fatty acids as esters cholesterol. This element is synthesized from Acetyl-co A and eventually expelled from the body through the bile as cholesterol salt. Free cholesterol is expelled from tissues by HDL and transported to the liver to be converted into bile acids (Murray et al., 1999). The state of Hypercholesterolemia is characterized by increased blood cholesterol levels above normal. In R. norvegicus Wistar strain rats, the normal blood cholesterol level is 10-54 mg/dl (Smith and Mangkoedijoko 1998).

Results of analysis of blood cholesterol levels are presented in Table 1. Statistical tests, VCO treatment, and Simvastatin can significantly reduce total blood cholesterol levels. Giving VCO 1 mL per day for 14 days can reduce total cholesterol by 19.1%, and 1.3 mL of VCO per day for 14 consecutive days can lower total cholesterol by 27.83%. Giving Simvastatin can reduce total cholesterol by 28.8%. The most effective dose VCO for lowering total cholesterol levels in this study was 1.3 mL, not so significantly different from the giving of Simvastatin.

In group I (control), rats were not fed with lard from the beginning to the end of treatment; on day 14th, they had a decrease in total cholesterol levels, and at the end of treatment, an increase of 4.6% occurred, meanwhile in group III (cholesterol) that were given feed and lard until day 28th, a decline in total cholesterol level with 6.7% which was significantly different from those treated by VCO.

Table 1. The mean of total blood cholesterol levels of white rats (R. norvegicus) (mg/dl) on day 1st, 14th and 28th and the percentage of increase and decrease.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1st Day</th>
<th>14th Day</th>
<th>Increase (%)</th>
<th>28th Day</th>
<th>Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>52.92±3.08</td>
<td>50.42±2.32</td>
<td>-4.7</td>
<td>52.74±4.17</td>
<td>-4.6</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>52.84±1.65</td>
<td>60.44±2.56</td>
<td>14.38</td>
<td>42.98±4.78</td>
<td>28.8</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>53±5.4</td>
<td>59.94±2.96</td>
<td>13.09</td>
<td>55.9±5.6</td>
<td>6.74</td>
</tr>
<tr>
<td>VCO 1 mL</td>
<td>51.74±0.96</td>
<td>58.84±2.9</td>
<td>13.8</td>
<td>47.6±2.8</td>
<td>19.1</td>
</tr>
<tr>
<td>VCO1.3 mL</td>
<td>52.81±4.55</td>
<td>61.8±6</td>
<td>17.4</td>
<td>44.6±2.76</td>
<td>27.83</td>
</tr>
</tbody>
</table>

Note: different letters in the same column indicate significant differences (P < 0.05)

Figure 2. Total blood cholesterol levels of R. norvegicus. Note: The blood cholesterol level (mg/dl) vs. time (days): A. The control group, simvastatin, cholesterol, VCO 1 mL, 1.3 mL VCO. B. Control, C. Simvastatin, D. Cholesterol, E. VCO 1 mL, F. VCO 1.3 mL.
According to Shah (2005), the VCO has a saturated fatty acid content dominated by medium-chain fatty acids. Chain fatty acids are dominated by lauric acid. Because of the small molecular size, medium-chain fatty acids are easily absorbed through the intestine without an enzymatic process. These fatty acids are carried to the liver blood flow to be metabolized and transported to the mitochondria without carnitine to produce energy quickly and efficiently. They are not deposited as fat in the tissue. The results are consistent with research conducted by Nevin (2004) on Sprague-Dawley rats animals fed diets VCO which showed that total cholesterol blood and LDL are decreased, and HDL levels are increased. The increase and decrease in total cholesterol levels in the blood during the experiment are shown in Figure 2.

LDL blood

Low-Density Lipoprotein transports lipids from the liver to the peripheral (extra-hepatic) and is often called "bad" cholesterol. According to Murray et al. (1996), LDL contains half to two-thirds of cholesterol. High levels of LDL are at risk of atherosclerosis.

Results of analysis of blood LDL levels were presented in Table 2. Treatment with a VCO was capable of lowering blood LDL levels significantly. Giving VCO 1 mL per day for 14 consecutive days reduced LDL levels by 12.2%, and 1.3 ml of VCO per day for 14 days decreased LDL levels by 28%. Giving VCO 1.3 mL was not significantly different from the provision of Simvastatin, which is 28%. Giving statins, including simvastatin, reduces blood LDL levels inhibit HMG Co-A reductase that would inhibit HMG Co A, inhibiting cholesterol synthesis and causing a decrease in the cholesterol concentration in the liver cells increasing the LDL receptor (E, Apo-B-100).

In this study, giving Simvastatin causes LDL levels to decrease from 26.5 on day 14th to 19.08 on day 28th. In group I (Control), which are not fed with lard, there was a slight decrease at 1.7% until the end of treatment. Group III during the first 14 days fed with lard and 14 days later no lard-fed, there was an increase in blood LDL levels by 6%, this was possible because the addition of hepatic cholesterol also comes from foods that contain cholesterol, so cholesterol levels in the body will remain high because the body also produces cholesterol. In this study, the giving of VCO lowered blood LDL levels and total cholesterol of blood level. This occurs because 65% of them are LDL cholesterol, so if total cholesterol decreases, LDL levels also decrease. The increase and decrease in LDL levels in the blood during the experiment can be shown in Figure 3.

Table 2. The mean levels of LDL blood of white rat (Rattus norvegicus L.) (mg/dl) on day 1st, to 14th and to 28th and the percentage of increase and decrease.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1st Day</th>
<th>14th Day</th>
<th>Increase (%)</th>
<th>28th Day</th>
<th>Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>19.1±4.1</td>
<td>25.78±5.12</td>
<td>34.97</td>
<td>25.34±5.44</td>
<td>1.7</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>17.84±3.16</td>
<td>26.5±3.53</td>
<td>48.54</td>
<td>19.08±4.02</td>
<td>28</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>15.3±1.53</td>
<td>32.2±6.83</td>
<td>110.45</td>
<td>34.14±7.11</td>
<td>6.02</td>
</tr>
<tr>
<td>VCO 1 mL</td>
<td>17.88±4.07</td>
<td>22.5±1.99</td>
<td>26.28</td>
<td>19.82±2.71</td>
<td>12.22</td>
</tr>
<tr>
<td>VCO1,3 mL</td>
<td>15.96±4.66</td>
<td>26.82±4.88</td>
<td>68.04</td>
<td>19.3±1.8b</td>
<td>28</td>
</tr>
</tbody>
</table>

Figure 3. Blood levels of LDL R. norvegicus. Note: The level of blood LDL (mg/dl) vs. time (days): A. The control group, simvastatin, cholesterol, VCO 1 mL, VCO 1.3 mL. B. Control, C. Simvastatin, D. Cholesterol, E. VCO 1 mL, F. VCO 1.3 mL.
HDL blood

High-Density Lipoprotein (HDL) cholesterol is often called "good" because it is a lipoprotein that transports lipids from the periphery to the liver. Because the molecules are relatively small compared to other lipoproteins, HDL can pass through the vascular endothelial cells and into the intima to bring back the accumulated cholesterol in macrophages. Besides, HDL also has antioxidant properties that can prevent LDL oxidation. The low HDL levels in the blood will increase the risk of atherosclerosis and coronary heart disease (Moeliandari and Wijaya 2002).

The results of Blood HDL analysis are presented in Table 3. From the statistical tests, the treatment with lard feeding for 14 days in different groups decreased HDL levels which were not significantly different. While at the end of treatment, increased HDL levels were very different. In group I (control), increased HDL cholesterol levels by 3.58% occurred at the end of treatment. In group II (Simvastatin), HDL levels increased by 16%. This group had HDL levels that were not significantly different from those with 1.3 mL VCO. Group III (cholesterol) that are not fed with lard after day 14th, until the end of treatment on day 28th there was an increase in HDL cholesterol by 8% only. Groups of mice with the highest HDL levels are fed with 1 mL of VCO by 29.68 mg/dl, and they are not significantly different from the group given by 1.3 mL VCO for 29.6 mg/dl. Giving VCO two doses can raise HDL levels better than giving Simvastatin. The decrease and increase of HDL levels in the blood are shown in Figure 4.

Virgin coconut oil comprises medium-chain fatty acids (C12), dominated by lauric acid. Medium-chain fatty acids (MCT) are more polar (faster in releasing H ions) than long-chain fatty acids (LCT). The nature of MCT solubility in water higher than LCT makes it easier to enter the liver directly via the portal vein after being absorbed by the intestine without pancreatic lipase and rapidly metabolized into energy. Medium-chain fatty acids are not included in the cholesterol cycle and do not accumulate as fat in body tissues. (Dayrit 2003). According to Enig (2001), the lauric acid in the VCO can burn fat from other sources and quickly make the energy and increase metabolism. In this study, the effect of VCO with its lauric acid content causes an increase in HDL levels. The function of HDL is to transport cholesterol from peripheral tissues to the liver, removing excess cholesterol and inhibiting the development of atheroma plaque, so the increase in HDL levels in the blood will prevent the risk of atherosclerosis.

Table 3. The mean blood HDL (mg/dl) of white rat (R. norvegicus) on days 1, 14, and 28 and percentage changes.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1st Day</th>
<th>14th Day</th>
<th>Increase (%)</th>
<th>28th Day</th>
<th>Decrease (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>21.38±1.94</td>
<td>23.98±1.74</td>
<td>-12%</td>
<td>24.34±2.89</td>
<td>3.58</td>
</tr>
<tr>
<td>Simvastatin</td>
<td>25.26±2.58</td>
<td>23.44±2.58</td>
<td>7.2%</td>
<td>27.8±3.68</td>
<td>16</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>21.32±1.95</td>
<td>19.94±1.19</td>
<td>6.47%</td>
<td>21.58±2.28</td>
<td>15.95</td>
</tr>
<tr>
<td>VCO 1 mL</td>
<td>23.98±1.74</td>
<td>22.26±2.19</td>
<td>7.17%</td>
<td>29.68±4.75</td>
<td>33.3</td>
</tr>
<tr>
<td>VCO 1.3 mL</td>
<td>23.2±2.93</td>
<td>22.68±2.28</td>
<td>2.24%</td>
<td>27.64±4.34</td>
<td>21.69</td>
</tr>
</tbody>
</table>

Figure 4. Blood levels of HDL, R. norvegicus. Note: The level of blood LDL (mg/dl) vs. time (days): A. The control group, simvastatin, cholesterol, VCO 1 mL, 1.3 mL VCO. B. Control, C. Simvastatin, D. Cholesterol, E. VCO 1 mL, F. VCO 1.3 mL.
Virgin Coconut Oil (VCO) contains 92% saturated fatty acids dominated by medium-chain fatty acids (MCT), which is 44% -55% is lauric acid. MCT metabolism is different from long-chain fatty acids (LCT); MCT can be absorbed rapidly in the intestine without the need for pancreatic lipase, carried by the portal vein into the liver, and rapidly oxidized into energy. This energy is used to increase metabolism, which can help protect the body from disease and accelerate healing.

According to Carandang (2005), VCO also contains an active ingredient, although, in small amounts, that can prevent and provide protection against disease and is beneficial to health. The active ingredient is tocopherol, an antioxidant with a phytol saturated side chain, and tocotrienols, a better antioxidant than tocopherol with an unsaturated isoprenoid side chain with three double bonds. Both of these active ingredients have a hypocholesterolemic effect, are anti-atherogenic, and are anti-cancer. Its anti-atherogenic activity inhibits LDL oxidation, suppresses the HMG-Co A reductase activity, and inhibits platelet aggregation (Theriault et al. 1999 in Carandang 2005). This is similar to the mechanism of simvastatin in lowering cholesterol levels and reducing levels of LDL. Other active ingredients in the VCO are flavonoids and polyphenols. Flavonoids as antioxidants have good effects on endothelial function, namely reducing LDL oxidation and increasing the production of Nitric Oxide (NO) (Vita 2005). The LDL oxidation would induce inflammatory responses by producing leukocytes and cytokines on endothelial. Flavonoids reduce LDL oxidation and prevent inflammation in indol. Nitric Oxide is an endogenous vasodilator that has the ability to anti-atherosclerosis. Polyphenols will prevent the oxidation of LDL. Oxidation of LDL would generate Reactive Oxygen Species (ROS) that are toxic, and if it binds with NO, it forms a peroxynitrite oxidant. Oxidation of cholesterol is to spur the process of atherosclerosis.

In this study, measurement of total cholesterol and LDL levels in both treatment doses showed a decrease, but not significantly different from simvastatin treatment. A decrease in cholesterol levels will reduce the occurrence of atherosclerosis.

CONCLUSION

Giving VCO (Virgin Coconut Oil) on hypercholesterolemic white rats (Rattus norvegicus L.) leads to lower cholesterol levels (total cholesterol, LDL) and HDL levels at a significance level of 5%, not so significantly different from the provision of patented drug Simvastatin as cholesterol-lowering drugs.

REFERENCES

Makole MBM. 1989. The use of animals in laboratory experiments. IPB, Bogor. [Indonesian]
Murray RK, Granner DK, Mayes PA, Rodwell VW. 1996. Harper Biochemistry, EGC, Jakarta. [Indonesian]
Syah ANA. 2005, Virgin Coconut Oil, Oil Conquering Various Diseases. Agromedia Pustaka, Jakarta. [Indonesian]