Somatic embryogenesis of the selected intergeneric hybrid between Phalaenopsis 2166 and Vanda ‘Saint Valentine’: Application of NAA and TDZ

##plugins.themes.bootstrap3.article.main##

MURNI DWIATI
AGUS HERY SUSANTO
http://orcid.org/0000-0003-0285-5515
IMAN BUDISANTOSO

Abstract

Abstract. Dwiati M, Susanto AH, Budisantoso I. 2022. Somatic embryogenesis of the selected intergeneric hybrid between Phalaenopsis 2166 and VandaSaint Valentine’: Application of NAA and TDZ. Nusantara Bioscience 14: 160-165. An intergeneric hybridization between Phalaenopsis 2166 and Vanda ‘Saint Valentine’ has successfully produced a hybrid seedling with several characters of potentially developing into plant individuals with flowers of better performance. Therefore, identical clones of the selected hybrid should be developed into PLBs by means of in-vitro culture technique employing somatic embryogenesis supported by the application of plant growth regulators. This study aims to unveil the effect of NAA and TDZ in stimulating the formation of identical clones of the selected intergeneric hybrid between Phalaenopsis 2166 and Vanda ‘Saint Valentine’. The experiment was arranged in a factorial Randomized Complete Block Design (RCBD) involving two factors, i.e., types of plant growth regulators and the levels of concentrations of each substance. It was found that the combination of NAA and TDZ had significant effect on the growth of the identical clones. The combination of NAA 0.5 mgL-1 and TDZ 1.5 mgL-1 resulted in the clones that potentially differentiate into PLBs. This finding indicates that NAA and TDZ should be applied appropriately to stimulate somatic embryogenesis in the intergeneric hybrid.

##plugins.themes.bootstrap3.article.details##

References
Ashihah FR, Rineksane IA, Astuti A. 2022. New Dogashima medium as subculture medium improve the growth of Vanda tricolor shoots from embryogenesis. IOP Conf. Series: Earth Environ. Sci. 985(1). https://doi.org/10.1088/1755-1315/985/1/012006.
Boldaji HN, Dylami SD, Aliniaeifard S, Norouzi M. 2021. Efficient method for direct embryogenesis in Phalaenopsis orchid. Int. J. Hort. Sci. Technol. 9(2): 37–50. https://doi.org/10.22059/ijhst.2020.296696.339.
Campos NA, Panis B, Carpentier SC. 2017. Somatic embryogenesis in coffee: the evolution of biotechnology and the integration of omics technologies offer great opportunities. Frontiers Plant Sci. 8: 1–12. https://doi.org/10.3389/fpls.2017.01460.
Dwiati M, Hardiyati T, Susanto AH, Chasanah T, Palupi D. 2020a. Growth medium for intergeneric hybrids between Phalaenopsis 2166 and Vanda “Saint Valentine.” IOP Conf. Series: Earth Environ. Sci. 593(1). https://doi.org/10.1088/1755-1315/593/1/012023.
Dwiati M, Susanto AH. 2021. Intergeneric hybridization between Phalaenopsis 2166 and Vanda “Saint Valentine”: characterization of parents using ndhE cpDNA partial sequence. J. Trop. Biodiv. Biotechnol. 6(3): 1–6. https://doi.org/10.22146/JTBB.65658.
Dwiati M, Susanto AH, Prayoga L. 2020b. Intergeneric hybrids of Phalaenopsis 2166 x Vanda ‘Saint Valentine’ showing maternal inheritance: genetic analysis based on ndhE partial gene. Biodiversitas 21(11): 5138–5145. https://doi.org/10.13057/biodiv/d211119.
Gantait S, Sinniah UR. 2012. Rapid micropropagation of monopodial orchid hybrid (Aranda Wan Chark Kuan “Blue” × Vanda coerulea Grifft. ex. Lindl.) through direct induction of protocorm-like bodies from leaf segments. Plant Growth Regulation 68(2): 129–140. https://doi.org/10.1007/s10725-012-9698-y.
Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH. 2011. Thidiazuron: a multi-dimensional plant growth regulator. African J. Biotechnol. 10(45): 8984–9000. https://doi.org/10.5897/ajb11.636.
Hardjo PH, Savitri WD, Bagus I, Artadana M, Emantoko S, Putra D, Parac EP, Jan A. 2021. Callus-mediated somatic embryogenesis and plant regeneration in Vanda tricolor Lindl. var. Pallida. Jordan J. Biol. Sci. 14(5): 933–937.
Jainol JE, Gansau JA. 2017. Embryogenic callus induction from leaf tip explants and protocorm-like body formation and shoot proliferation of Dimorphorchis lowii: Borneon endemic orchid. Agrivita 39(1): 1–10. https://doi.org/10.17503/agrivita.v39i1.895.
Kou Y, Yuan C, Zhao Q, Liu G, Nie J, Ma Z, Cheng C, Teixeira da Silva JA, Zhao L. 2016. Thidiazuron triggers morphogenesis in Rosa canina L. protocorm-like bodies by changing incipient cell fate. Frontiers Plant Sci. 7: 1–13. https://doi.org/10.3389/fpls.2016.00557.
Kurniawan FH, Nazar L, Anjarwati R, Sasono HD, Rahayuningsih M. 2021. Orchids of Mount Ungaran (Indonesia) compiled from a decade of data collections between 2010 and 2021. Nusantara Biosci. 13(2): 238–252. https://doi.org/10.13057/nusbiosci/n130214.
Lee YI, Hsu ST, Yeung EC. 2013. Orchid protocorm-like bodies are somatic embryos. Amer. J. Bot. 100(11): 2121–2131. https://doi.org/10.3732/ajb.1300193.
Li C, Dong N, Zhao Y, Wu S, Liu Z, Zhai J. 2021. A review for the breeding of orchids: current achievements and prospects. Hort. Plant J. 7(5): 380–392. https://doi.org/10.1016/j.hpj.2021.02.006.
Mayer JLS, Stancato GC, Appezzato-Da-Glória B. 2010. Direct regeneration of protocorm-like bodies (PLBs) from leaf apices of Oncidium flexuosum Sims (Orchidaceae). Plant Cell Tissue Organ Cult. 103(3): 411–416. https://doi.org/10.1007/s11240-010-9782-9.
Méndez-Hernández HA, Ledezma-Rodríguez M, Avilez-Montalvo RN, Juárez-Gómez YL, Skeete A, Avilez-Montalvo J, De-La-Peña C, Loyola-Vargas VM. 2019. Signaling overview of plant somatic embryogenesis. Frontiers Plant Sci. 10: 1–15. https://doi.org/10.3389/fpls.2019.00077.
Moradi S, Dianati Daylami S, Arab M, Vahdati K. 2017. Direct somatic embryogenesis in Epipactis veratrifolia, a temperate terrestrial orchid. J. Hort. Sci. Biotechnol. 92(1): 88–97. https://doi.org/10.1080/14620316.2016.1228434.
Mose W, Indrianto A, Purwantoro A, Semiarti E. 2017. The influence of thidiazuron on direct somatic embryo formation from various types of explant in Phalaenopsis amabilis (L.) Blume Orchid. Hayati J. Biosci. 24(4): 201–205. https://doi.org/10.1016/j.hjb.2017.11.005.
Naing AH, Chung JD, Lim KB. 2011. Plant regeneration through indirect somatic embryogenesis in Coelogyne cristata orchid. Amer. J. Plant Sci. 02(02): 262–267. https://doi.org/10.4236/ajps.2011.22028.
Parthibhan S, Rao MV, Teixeira da Silva, JA, Senthil Kumar T. 2018. Somatic embryogenesis from stem thin cell layers of Dendrobium aqueum. Biologia Plantarum 62(3): 439–450. https://doi.org/10.1007/s10535-018-0769-4.
Pereira JAF, Ferreira LT, De Morais MB, Ulisses C. 2019. Somatic embryos from Phalaenopsis classic spotted pink (Orchidaceae) protocorms. Ciencia Rural 49(7): 1 - 5. https://doi.org/10.1590/0103-8478cr20180822.
Seth S, Rath SC, Rout GR, Panigrahi J. 2017. Somatic embryogenesis in Abutilon indicum (L.) sweet and assessment of genetic homogeneity using SCoT markers. Plant Biosystems 151(4): 704–714. https://doi.org/10.1080/11263504.2016.1211193.
Shen HJ, Chen JT, Chung HH, Chang WC. 2018. Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore ‘Elsa.’ Bot. Stud. 59(1): 1 - 7. https://doi.org/10.1186/s40529-018-0220-3.
Sherif NA, Franklin Benjamin JH, Senthil Kumar T, Rao MV. 2018. Somatic embryogenesis, acclimatization and genetic homogeneity assessment of regenerated plantlets of Anoectochilus elatus Lindl., an endangered terrestrial jewel orchid. Plant Cell Tissue Organ Cult. 132(2): 303–316. https://doi.org/10.1007/s11240-017-1330-4.
Soonthornkalump S, Nakkanong K, Meesawat U. 2019. In vitro cloning via direct somatic embryogenesis and genetic stability assessment of Paphiopedilum niveum (Rchb.f.) Stein: the endangered Venus’s slipper orchid. In Vitro Cell. Dev. Biol.-Plant 55(3): 265–276. https://doi.org/10.1007/s11627-019-09981-7.
Wu K, Zeng S, Teixeira da Silva JA, Chen Z, Zhang J, Yang Y, Duan J. 2012. Efficient regeneration of Renanthera Tom Thumb “Qilin” from leaf explants. Scientia Hort, 135: 194–201. https://doi.org/10.1016/j.scienta.2011.11.028.
Yang X, Zhang X. 2010. Regulation of somatic embryogenesis in higher plants. Critical Rev. Plant Sci. 29(1): 36–57. https://doi.org/10.1080/07352680903436291.
Zanello CA, Cardoso JC. 2019. PLBs induction and clonal plantlet regeneration from leaf segment of commercial hybrids of Phalaenopsis. J. Hort. Sci. Biotechnol. 00(00), 1–5. https://doi.org/10.1080/14620316.2019.1600384.
Zhao P, Begcy K, Dresselhaus T, Sun MX. 2017. Does early embryogenesis in eudicots and monocots involve the same mechanism and molecular players? Plant Physiol. 173(1): 130–142. https://doi.org/10.1104/pp.16.01406.