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Abstrak. Santika YE, Wardha'adlina WA, Arta YPA, Maheswara VD, Wiraatmaja MF, Setyawan AD. 2024. Estimasi distribusi Ruellia 

tuberosa saat ini dan masa mendatang di Pulau Jawa dan Madura, Indonesia. Pros Sem Nas Masy Biodiv Indon 10: 32-44. Ruellia 

tuberosa L. diidentifikasi sebagai tanaman invasif yang dapat mengganggu ekosistem lokal. Distribusi tanaman ini harus diketahui 

untuk menentukan prioritas pengelolaan guna mengurangi dampaknya. Penelitian ini bertujuan untuk mengetahui sebaran R. tuberosa 

saat ini dan estimasi sebarannya di masa mendatang di Pulau Jawa dan Madura, Indonesia dengan menggunakan perangkat lunak 

Maximum Entropy (MaxEnt). Oleh karena itu, 21 parameter dalam pemodelan ini terdiri dari 19 variabel bioklimatik, ketinggian, dan 

radiasi Matahari. Skenario RCP 2.6 dan 8.5 digunakan dalam penelitian ini untuk memprediksi sebaran R. tuberosa di masa mendatang. 

Titik sampel diperoleh dari dua sumber data, yaitu Global Biodiversity Information Facility (GBIF) dan pengamatan langsung. Hasil 

pemodelan sebaran menggunakan MaxEnt menunjukkan nilai AUC sebesar 0,959. Nilai ini menunjukkan bahwa hasil pemodelan 

menggunakan MaxEnt memiliki kinerja yang lebih baik dibandingkan dengan metode acak. Pemodelan sebaran pertumbuhan tanaman 

R. tuberosa pada tahun 2030, 2050, dan 2080 menunjukkan adanya penurunan sebaran tanaman tersebut dari tahun ke tahun yang cukup 

signifikan karena pada tahun tersebut terjadi perubahan iklim yang cukup signifikan yang diakibatkan oleh peningkatan kadar CO2 yang 

mengakibatkan terjadinya perubahan iklim global sehingga mempengaruhi pertumbuhan tanaman invasif. Parameter utama yang paling 

dominan mempengaruhi sebaran R. tuberosa adalah BIO 9 (Mean Temperature of Dryest Quarter). Hal ini perlu menjadi perhatian 

pengelola lingkungan, karena tanaman ini tergolong tanaman invasif. 

Kata kunci: Estimasi distribusi di masa depan, spesies invasif, MaxEnt, Ruellia tuberosa, pemodelan distribusi spesies 

Abstract. Santika YE, Wardha'adlina WA, Arta YPA, Maheswara VD, Wiraatmaja MF, Setyawan AD. 2024. Estimation of current and 

future distribution of Ruellia tuberosa in Java and Madura Island, Indonesia. Pros Sem Nas Masy Biodiv Indon 10: 32-44. Ruellia 

tuberosa L. is identified as an invasive plant that can disrupt local ecosystems. The distribution must be known to determine priority 

management to reduce the impact. This study aims to determine the current distribution of R. tuberosa and its estimated future 

distribution in Java and Madura Island, Indonesia using Maximum Entropy (MaxEnt) software. Therefore, 21 parameters in this 

modeling consisted of 19 Bioclimatic Variables, Elevation, and Solar Radiation. RCP scenarios 2.6 and 8.5 were used in this study to 

predict the future spread of R. tuberosa. Sample points were obtained from two data sources, the Global Biodiversity Information 

Facility (GBIF) and direct observation. The results of distribution modeling using MaxEnt showed an AUC value of 0.959. This value 

indicates that the modeling results using MaxEnt have better performance than the random method. Modeling the growth distribution of 

R. tuberosa plants in 2030, 2050, and 2080 shows a significant decrease in the distribution of these plants from year to year because 

there was significant climate change in that year, which was caused by an increase in CO2 levels, which led to global climate change, 

thus affecting the growth of invasive plants. The main parameter that predominantly influences the spread of R. tuberosa is BIO 9 

(Mean Temperature of Driest Quarter). This needs to be of concern to environmental managers, because this plant is classified as an 

invasive species. 

Keywords: Estimation future distribution, invasive species, MaxEnt, Ruellia tuberosa, species distribution modeling 

INTRODUCTION 

Ruellia tuberosa L. is known as Blue-bell, Spearpod, 

Minnieroot, Snapdragon root, cracker plant, or popping 

pod, while in Indonesia it is called pletekan, pletikan, or 

ciplukan (Safitri et al. 2018; Dutta et al. 2020). Ruellia 

tuberosa is a species of the Acanthaceae family whose 

habitus is perennial herbs (Wati and Anisatu 2023). Ruellia 

tuberosa comes from Central America and spreads to 

Southeast Asia; and grows in dry, hot, and tropical to 
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subtropical areas, grows fast in humid and shady areas at 

150 meters above sea level, and survives in various 

environmental conditions (Seerangaraj et al. 2021; Putri et 

al. 2022; Susilo and Farhan 2023). Initially, R. tuberosa in 

Indonesia was known as a weed plant and was not widely 

used by people in Indonesia as a medicinal plant (Amajida 

et al. 2019). Ruellia tuberosa is widespread in Indonesia 

because of its tropical climate, so it is a suitable place for 

R. tuberosa plants to grow (Safitri et al. 2019). Ruellia 

tuberosa has benefits in treatment such as anti-diabetic, 

anti-inflammatory, antinociceptive, antipyretic, antidiuretic, 

analgesic, diuresis, antihypertensive, antioxidant, 

insecticide, anticancer, and antidote poison agent (Hepni et 

al. 2021; Kannan et al. 2021; Annisa et al. 2022). 

Java and Madura are two islands in Indonesia 

experiencing diversity degradation because invasive 

species are replacing them. One invasive plant often found 

on Java and Madura Island is R. tuberosa, for example, in 

Balekambang Malang forest (Mukarromah et al. 2020). 

The Java and Madura islands have a warm climate suitable 

for R. tuberosa to grow compared to other islands. 

According to Setiawan (2009), climate is important to 

support plant growth and productivity, sometimes even 

more important than soil conditions. Therefore, Java and 

Madura were chosen as research locations for R. tuberosa 

because the potential for distribution is high. Invasive 

species are species that have a negative impact on the 

native diversity. Invasive plants are plants that grow 

outside their natural area and grow in other areas, which 

have a negative impact on their new habitat and native 

diversity, as dominating plants in the ecosystem causes 

species destruction, damage to the environmental or 

ecosystems, nutrient and hydrological cycles (Susanti et al. 

2013; Thapa et al. 2018). Invasive plants have several 

characteristics: high growth and reproduction, fast 

adaptation, increased populations quickly, and the ability to 

live with new food sources (Tjitrosoedirdjo et al. 2016). 

Ruellia tuberosa plant is considered an invasive shrub 

because it is not native to Indonesia. It threatens the 

ecosystem because it spreads quickly and disturbs the 

native vegetation. One way that can be done to determine 

the current and future distribution of the invasive plant R. 

tuberosa is to model its distribution using MaxEnt software 

(Putri et al. 2019). 

Maximum Entropy (MaxEnt) is software that can 

estimate the distribution of a species using environmental 

variables (Phillips and Dudík 2008). MaxEnt modeling is 

robust and accurate and uses a very small number of data 

samples (Stalin and Swamy 2015; Chhetri et al. 2018) on 

the presence of species and environmental variables 

(Hermawan et al. 2017). MaxEnt can predict current and 

future invasive plant distribution by including data on 

environmental variables that have been predicted in the 

future. This model has proven to be in modeling species 

distributions with relatively little occurrence data. The 

distribution model accuracy is analyzed using the Area 

Under Curve (AUC) value to determine priority areas for 

controlling R. tuberosa (Gunawan Et al. 2023). According 

to Phillips et al. (2006), if the AUC value is close to 0.5, 

then the model is no better than random modeling; if close 

to 1, then the model performs better in determining the 

suitability of a species' habitat. According to West et al. 

(2016), the MaxEnt model can be used to predict or 

estimate land for invasive species management; this 

modeling can only reflect habitat suitability for invasive 

species based on previous model comparison studies. 

Therefore, this study aims to determine the current 

distribution of R. tuberosa and estimate its future 

distribution in Java and Madura Island, Indonesia using 

MaxEnt. 

MATERIALS AND METHODS 

Study area  

The area of concentration in this study is Java-Madura 

Island. Both islands are located in the south of Indonesia 

(Figure 1). Java-Madura Island has several provinces, 

including Banten, West Java, DKI Jakarta, Central Java, 

Yogyakarta Special Region, and East Java. The islands of 

Java and Madura were formed during the tertiary and 

quaternary periods, consisting of rhyolitic, dacite-andesite, 

breccia, and lava tuffs, partly interspersed with sandstones, 

shales, carbonaceous tuffs, and claystone (Beckford et al. 

2023). Java-Madura Island has a tropical climate 

influenced by the West and east monsoons. This island 

often experiences pancaroba (seasonal changes) due to the 

rainy and dry seasons. Madura Island itself is a dry land 

that does not have volcanoes (Muda et al. 2020). 

Sample points were obtained from two data sources, the 

Global Biodiversity Information Facility (GBIF) (53 

sampling points) and direct observation (11 sampling 

points), where a total of 64 point occurences has been used. 

Sampling points with direct observation were carried out 

by providing coordinates at locations overgrown with R. 

tuberosa around Surakarta City, Klaten District, Semarang 

District, and Sampang District using Google Earth. Sample 

points from GBIF are obtained by downloading a collection 

of coordinates of the existence of R. tuberosa through 

www.gbif.org. The coordinates of both sources are adjusted 

to MaxEnt format (Longitude, Latitude), then saved in 

Excel with CSV format. After the coordinate points are 

adjusted, they can be used for modeling in MaxEnt 

software (Zhang et al. 2021).  

Ruellia tuberosa 

Ruellia tuberosa has striking funnel-shaped purple 

bracteate flowers on dichotomous plants, thick fusiform 

tuberous roots, sessile subcylindrical puberulent capsule-

shaped fruits with a length of 2 cm, having approximately 

20 seeds per loci, linear hypnoid petal lobes 12-20 mm 

long, purple suborbicular lobes with a width of 12-15 mm 

and a diameter of 2-2.5 mm, crown tubes 4-6 cm long, 

erect and broadly branched stems up to 50 cm high, most 

basal petiolate leaves are ovate smooth to oval with 1.5 cm 

long alate petioles and pubescent leaf blades measuring 4-6 

× 1.5-2.5 cm with cuneate base, blunt apex, and wavy 

edges (Dutta et al. 2020; Kannan et al. 2021). Ruellia 

tuberosa has a unique characteristic: the dry pods that pop 

if contacted with water or rubbed with spit (Dutta et al. 
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2020). Ruellia tuberosa is also used by humans as 

medicinal for treating anti-diabetic, anti-inflammatory, 

antinociceptive, antipyretic, antidiuretic, analgesic, 

diuresis, antihypertensive, antioxidant, insecticide, 

anticancer, and antidote poison agent (Hepni et al. 2021; 

Kannan et al. 2021; Annisa et al. 2022).  

Ruellia tuberosa is suitable to grow in tropical climates 

(Safitri et al. 2019) and is frequently found in gardens, 

grasslands, roadsides, or wastelands (Figure 2) (Harika and 

Radhika 2019; Dutta et al. 2020). Ruellia tuberosa is a weed 

in cultivated fields, xerophiles, and waste ground/ruderal 

habitats (Dutta et al. 2020). This causes an increase in the 

potential spread of R. tuberosa with drier climate change, 

while this plant is classified as an invasive species. 

Ruellia tuberosa distribution modeling  

Species distribution maps are created using MaxEnt 

modeling, thus enabling the prediction of the spatial 

distribution of species based on existing environmental 

data. MaxEnt is a very helpful software for creating maps 

of the actual distribution of species. Various environmental 

factors, including topography, soil type, climate data, and 

other related information, can be used in this method 

(Asanok et al. 2020). This provides a clearer picture for 

researchers and conservation practitioners to focus their 

efforts better. The accuracy of variables related to the 

phenomenon under study and the completeness and quality 

of environmental data used as inputs determine how 

accurate the predictions made by the MaxEnt model are 

(Kaky et al. 2020). Therefore, a thorough review is needed 

to ensure the effectiveness and accuracy of the resulting 

model in forecasting the distribution of observed events. 

The MaxEnt model generates data in the form of prediction 

maps, response curves with AUC, and Jackknife analysis 

results that help the interpretation and understanding of 

model results by researchers (Muttaqin et al. 2019). Jackknife 

results are presented in a bar chart. These findings were 

used to identify the most influencing factors in the MaxEnt 

model. Based on research by Wei et al. (2020), the model 

map produced by MaxEnt displays the level of habitat 

suitability that can be classified into four classes, namely 

least suitable (0.0-0.2), low suitability (0.2-0.4), medium 

suitability (0.4-0.6), and high suitability (0.6-1). 

 

 
 

Figure 2. Images of Ruellia tuberosa 

  

 

 

 
 

Figure 1. Map of the study area and distribution of Ruellia tuberosa 
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The step of making a species distribution map begins 

with the collection of environmental parameters and 

distribution points of related species. Furthermore, 

environmental parameters and points of presence of species 

are adjusted in format to the requirements of MaxEnt. 

Location points must be created with the format species, 

longitude, and latitude in a Comma-Separated Value (CSV) 

file. Each environmental parameter is ensured to be a 

uniform resolution. Parameters with larger resolutions can 

be downgraded to be the same resolutions as other 

environmental parameters. According to Merow et al. 

(2013), in using MaxEnt, the first step is to input 

environmental data and species presence as inputs for 

modeling. The MaxEnt model was then run by considering 

the environmental data provided to predict the spatial 

distribution of the species studied. The results of this model 

will provide information on species preferences based on 

the environmental variables considered. The next process 

involves analyzing MaxEnt results using ArcGIS, and the 

resulting data from MaxEnt in ASC format is fed into 

ArcGIS for further analysis. MaxEnt results are classified 

at this stage by changing the number of classes and 

adjusting the limit values according to research needs. In 

addition, raster data conversion into polygons is carried out 

to facilitate spatial analysis. The final stage is the 

visualization and interpretation of the results. 

 

Environmental parameters 

This study used 21 parameters of 19 Bioclimatic 

Variables, Elevation, and Solar Radiation (Table 1). These 

environmental variables are downloaded from the global 

climate database WorldClim (www.worldclim.org) (Yiwen 

et al. 2016); altitude parameters affect habitat types 

(Matyukhina et al. 2014). The environment variable has a 

raster format with a spatial resolution of 30s (1 km2) (Wei 

et al. 2018). Environmental variables were cut according to 

the study area under evaluation, to be obtained in raster 

format but with different resolutions and projections 

(Wiese et al. 2019). Before model creation, each 

environment variable must be converted from image file 

format (.Tiff) to ASC form (Wan et al. 2021). Data 

Projections in Worldclim must be converted using ArcGIS 

in CRS projection format: EPSSG:4326 -WGS 84 (Zhao et 

al. 2021). In the initial model-building process, the 

Jackknife test in MaxEnt software is used to determine the 

contribution of environmental variables to the model 

prediction process and obtain key environmental factors. 

This is used to eliminate variables that contribute less to the 

predicted results of the MaxEnt model (Hundessa et al. 

2018). Environmental parameters were determined based 

on contributions to the modeling process with jackknife 

tests to predict geographic distribution, species abundance 

distribution patterns, and invasive species distribution (Xu 

et al. 2019); after modeling the current distribution of R. 

tuberosa, modeling its distribution for the future with 

future climate change scenarios Representative 

Concentration Pathway (RCP) (Dong and Gao 2014). The 

future prediction process is carried out using 2 scenarios, 

namely in 2030, 2050, and 2080. In this study, we chose to 

estimate the distribution of R. tuberosa in 2030, 2050, and 

2080 because there was significant climate change in that 

year, which was caused by an increase in CO2 levels, which 

led to global climate change, thus affecting the growth of 

invasive plants (Muis 2023). The emergence of CO2 is 

caused by population growth every year (Suadnyani et al. 

2023); it contributes to air pollution, causes global 

warming, and triggers climate change (Akhirul et al. 2020). 

Climate change encourages invasive plants to have high 

plasticity, which is closely related to the balance of water 

content to determine the survival of these plants 

(Rahmadani et al. 2021). The scenarios used are RCP 2 and 

RCP 8, where RCP 2.6 means minimum greenhouse gas 

emissions and RCP 8.5 means maximum green house 

emission (Zhang et al. 2018). Future climate scenarios 

predict regions that allow R. tuberosa to grow in suitable 

and unsuitable areas (Zeng et al. 2021). 

Classification and calculation of Ruellia tuberosa 

distribution area 

The classification aims to categorize values according 

to the suitability of the distribution area of R. tuberosa. 

Classing using Arcgis is done by entering maxent output 

with ASC format in ArcGIS and then reclassifying ASC 

raster data into 4 classes, namely, least suitable (0.0-0.2), 

low suitability (0.2-0.4), medium suitability (0.4-0.6), and 

high suitability (0.6-1.0) (Gunawan et al. 2023). Convert 

raster data as a new layer from reclassify into polygon data. 

Dissolve the resulting raster to the polygon layer via 

Geoprocessing by checking the "Gridcode" column. In the 

dissolve result layer, enter all values of type "Gridcode" 

through the "Symbology" property, then set the color from 

green to red color, indicating low to high expression of 

suitability (Tian et al. 2020). 
 

 

Table 1. Environmental parameters for MaxEnt Modeling 

 

Code Parameter 

BIO 1 Average annual temperature 

BIO 2 Daily average forecast 

BIO 3 Isothermal, 

BIO 4 Seasonal Temperature 

BIO 5 Maximum temperature of the hottest month 

BIO 6 Minimum temperature of the coldest month 

BIO 7 Annual Temperature Forecast 

BIO 8 Average temperature in the wettest quarter 

BIO 9 Average temperature in the driest quarter 

BIO 10 Average temperature in the hottest quarter 

BIO 11 Average temperature in the coldest quarter 

BIO 12 Annual rainfall 

BIO 13 Rainfall in the wettest months 

BIO 14 Rainfall in the driest month 

BIO 15 Seasonal rainfall 

BIO 16 Rainfall in the wettest quarter 

BIO 17 Rainfall in the driest quarter 

BIO 18 Rainfall in the hottest quarter 

BIO 19 Rainfall in the coldest quarter 

Elevvasis Elevation 

SRAD Solar Radiation 
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The calculation of the area aims to obtain information 

on the suitability of the distribution area of R. tuberosa in 

units of square kilometers (km2). The calculation of the 

area using ArcGIS is done by converting the geographic 

coordinate system of the data frame into a datum 

"D_WGS_1984" (Huang et al. 2023). Open the attribute 

table of the dissolve result layer and create two new 

columns named "Suitability Index" with the type "Text" 

and "Area Measurement" with the type "Double." Enter 

edit mode and input 4 classes of least suitable (0.0-0.2), 

low suitability (0.2-0.4), medium suitability (0.4-0.6), and 

high suitability (0.6-1.0) (Gunawan et al. 2023) in the 

"Suitability Index" column then perform geometry 

calculations to determining area in geodesy by measuring 

and calculating area using existing data through plans or 

maps (Frančula et al. 2021). Geometry calculations are 

performed in the "Area Measurement" column with the 

property of "Area," using the corresponding coordinate 

system and the square kilometer unit (km2) then save the 

edits. 

RESULTS AND DISCUSSION 

In the current Modeling Map (Figure 3) and the current 

Conformity and Area Index Data (Table 2), a map of the 

potential distribution of R. tuberosa on Java and Madura 

Island is known with its area. AUC is a measure of 

discrimination obtained from a fusion matrix that interprets 

the model's success in appropriately distinguishing 

attendance and absence with an AUC value range between 

0 and 1, where 0.5 means random discrimination and 1 

means perfect and good discrimination (Hao et al. 2020). 

Based on the AUC value, it is known to be 0.959, where 

the AUC value is close to number one, which means that 

the current distribution modeling map results have a very 

good model and suitability of the area where the plant 

grows. The most influential parameter is BIO 4 

(Temperature Seasonality). The contribution of this 

parameter is 22.8%, with important permutations worth 

23%, indicating that Temperature Seasonality significantly 

influences the distribution of R. tuberosa plants (Table 3). 

Similar research by Zhang et al. (2023) also showed that 

parameter BIO 4 (Temperature Seasonality) was the most 

influential parameter for the potential geographic 

distribution of Keteleeria davidiana (Bertrand) Beissn., 

with a contribution rate of 34.96% and permutation 

importance value of 31.72%. Based on the visual map, it is 

known that areas with very low suitability dominate most 

of Java and Madura. There are also areas with low 

suitability in some areas around areas with high suitability, 

which are more clearly visible than areas with medium 

suitability. The current modeling map shows that the 

potential areas for R. tuberosa distribution are Jakarta, 

Depok, Bekasi, Bogor, Yogyakarta, Wonosari, Tegal, 

South Tangerang, Subang, Karawang, Cirebon, Brebes, 

Bitung, Slawi, Surakarta, Klaten, Wonogiri, Sukoharjo, 

Ponorogo, and Sampang (Figure 3). That shows R. 

tuberosa is suitable for growing in densely populated and 

residential areas. The order of area suitability area of the 

largest is very low suitability, covering an area of 112,894 

km2; low suitability, covering an area of 10,556 km2; high 

suitability, covering an area of 4,491 km2; and medium 

suitability, covering an area of 4,452 km2 (Table 2). 

In the estimated distribution map of R. tuberosa plants 

in 2030 using RCP 8.5, the most influential parameter is 

BIO 9, or the Mean Temperature of the Driest Quarter 

shown on the AUC curve yield graph (Figure 4). With an 

AUC value of 0.934, which means the results are accurate. 

The contribution of this parameter is 17.6%, indicating that 

the driest quarter temperature significantly influences the 

distribution of such crops. The effect of environmental 

variables on the distribution of R. tuberosa (Table 3) shows 

that the parameters BIO 4 and BIO 12 also have a 

considerable influence on the distribution of R. tuberosa 

plants, where BIO 4 is Temperature Seasonality and BIO 

12 is Annual Precipitation. Based on the Suitability Index 

and Area of Distribution of R. tuberosa in 2030 RCP 8.5 

table (Table 2), the order of suitability of the area from the 

largest is very low suitability of 89581 km2, then low 

suitability of 21474 km2, high suitability of 10472 km2, and 

lastly, medium suitability of 10226 km2 

In the estimated distribution map of R. tuberosa plants 

in 2050 using RCP 8.5, the most influential parameter is 

BIO 19, or Precipitation of Coldest Quarter, with a total 

contribution of 17.8%, shown in the curve yield graph 

(Figure 4). With an AUC value of 0.943, which means the 

results are accurate. The effect of Environmental Variables 

on the Distribution of R. tuberosa (Table 3) shows that the 

parameters BIO 9 and BIO 2 also have a considerable 

influence on the distribution of R. tuberosa plants, where 

BIO 9 is the Mean Temperature of Driest Quarter and BIO 

2 is the Mean Diurnal Range. Compared to 2030, the 

distribution of R. tuberosa plants seems to decrease. Based 

on the Suitability Index and Area of Distribution of R. 

tuberosa in 2050 RCP 8.5 table (Table 2), the order of 

suitability of the area from the largest is very low 

suitability of 98258 km2, then low suitability of 15854 km2, 

high suitability of 9035 km2, and lastly, medium suitability 

of 86289 km2. 

In the estimated distribution map of R. tuberosa plants 

2080 using RCP 8.5, the most influential parameter is BIO 

9 or Mean Temperature of Driest Quarter, with a total 

contribution of 16.4% shown in the curve result graph 

(Figure 4). With an AUC value of 0.942, which means the 

results are accurate. In the Effect of Environmental 

Variables on the Distribution of R. tuberosa (Table 3), it is 

shown that parameters BIO 19 and BIO 3 also have a 

considerable influence on the distribution of R. tuberosa 

plants, where BIO 19 is the Precipitation of the Coldest 

Quarter, and BIO 3 is Isothermality. The decline in the 

distribution of R. tuberosa occurred again in 2080. Based 

on the Suitability Index and Area of Distribution of R. 

tuberosa in the 2080 RCP 8.5 table (Table 2), the order of 

suitability of the area from the largest is very low 

suitability of 94155 km2, then low suitability of 20923 km2, 

high suitability of 8487 km2, and lastly, medium suitability 

of 8205 km2. 
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Figure 3. Distribution of Ruellia tuberosa 

 

 

 

 

Figure 4. The result of AUC curves 
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Table 2. Suitability Index and area of distribution of R. tuberosa  

 

Index Name Suitability Index 

Area (km2) 

Current 
2030 

RCP 8.5 

2050 

RCP 8.5 

2080 

RCP 8.5 

2030 

RCP 2.6 

2050 

RCP 2.6 

2080 

RCP 2.6 

Very Low Suitability 0-0.2 112894 89581 98258 94155 74142 92046 91229 

Low Suitability 0.2-0.4 10556 21474 15854 20923 32129 19020 21037 

Medium Suitability 0.4-0.6 4452 10226 8628 8205 16460 9451 9441 

High Suitability 0.6-1 4491 10472 9035 8487 8978 11205 10059 

 

 

In the estimated distribution map of R. tuberosa in 2030 

using RCP 2.6, the most influential parameter is BIO 6, or 

Minimum Temperature of The Coldest Month, with a total 

contribution of 15% shown on the curve yield graph 

(Figure 4). With an AUC value of 0.921, which means the 

results are accurate. The effect of Environmental Variables 

on the Distribution of R. tuberosa (Table 3) shows that the 

parameters BIO 9 and BIO 4 also have a considerable 

influence on the distribution of R. tuberosa plants, where 

BIO 9 is the Mean Temperature of Driest Quarter and BIO 

4 is Temperature Seasonality. This parameter highlights the 

importance of minimum temperatures during the coldest 

months in forming the distribution pattern of R. tuberosa. 

A decrease in minimum temperature in the coldest months, 

as indicated in BIO 6's contribution to the RCP 2 scenario, 

can change environmental conditions and create a more 

suitable space for the growth of these plants. Based on the 

Suitability Index and Area of Distribution of R. tuberosa in 

2030 RCP 2.6 table (Table 2), the order of suitability of the 

area from the largest is very low suitability of 74142 km2, 

then low suitability of 32129 km2, medium suitability of 

16460 km2, and lastly, high suitability of 8978 km2. 

In the estimated distribution map of R. tuberosa plants 

in 2050 using RCP 2.6, the most influential parameter is 

BIO 4 or Temperature Seasonality, with a total contribution 

of 21.1%. With an AUC value of 0.930 shown in the curve 

result (Figure 4), the result is accurate. The effect of 

Environmental Variables on the Distribution of R. tuberosa 

(Table 3) shows that the parameters BIO 9 and BIO 12 also 

have a considerable influence on the distribution of R. 

tuberosa plants, where BIO 9 is the Mean Temperature of 

Driest Quarter and BIO 12 is Annual Precipitation. This 

parameter describes temperature fluctuations between 

seasons of the year in a region. Based on the Suitability 

Index and Area of Distribution of R. tuberosa in 2050 RCP 

2.6 table (Table 2), the order of suitability of the area from 

the largest is very low suitability of 92046 km2, low 

suitability of 19020 km2, high suitability of 11205 km2 and 

lastly, medium suitability of 9451 km2. 

In the estimated distribution map of R. tuberosa plants 

2080 using RCP 2.6, the most influential parameter is BIO 

9 or Mean Temperature of Driest Quarter, with a total 

contribution of 14.6%. With an AUC value of 0.940 shown 

in the curve result (Figure 4), the result is accurate. The 

effect of Environmental Variables on the Distribution of R. 

tuberosa (Table 3) shows that parameters BIO 4 and BIO 

17 also have a considerable influence on the distribution of 

R. tuberosa plants, where BIO 4 is Temperature 

Seasonality and BIO 17 is Precipitation of Driest Quarter. 

Based on the Suitability Index and Area of Distribution of 

R. tuberosa in the 2080 RCP 2.6 (Table 2), the order of 

suitability of the area from the largest is very low 

suitability of 91229 km2, low suitability of 21037 km2, high 

suitability of 10059 km2, and medium suitability of 9441 

km2.  

The influence of environmental variables on R. 

tuberosa habitat was a suitability modeling based on 

operational results from Jackknife. This graph is a method 

used to determine the influence of environmental variable 

factors on the modeling system (Putri et al. 2019). Based 

on the results of Jackknife operations today (2023) (Figure 

5), the factor that most influences the growth of R. tuberosa 

plants is BIO 4 (Temperature Seasonality). The 

environmental variable that influences the current growth 

of R. tuberosa is seasonal temperature. Jackknife's 

predictions for 2030, 2050, and 2080 have 2 modeling 

scenarios: RCP 2.6 and RCP 8.5. RCP 2.6 is used for 

minimum greenhouse gas emissions, and RCP 8.5 means 

maximum greenhouse gas emissions. Based on the 

predicted results of Jackknife modeling operations in 2030 

using RCP 2.6 (Figure 6), the environmental variable that 

has the most influence on the growth of the invasive plant 

R. tuberosa is BIO 19 (Precipitation of Coldest Quarter). In 

contrast, in 2030 modeling using RCP 8.5 (Figure 6), there 

are 4 environmental variables that influence the growth and 

development of R. tuberosa plants, namely BIO 19 

(Precipitation of Coldest Quarter), BIO 4 (Temperature 

Seasonality), BIO 6 (Min Temperature of Coldest Month), 

and BIO 9 (Mean Temperature of Driest Quarter). Based 

on the results of the Jackknife 2050 modeling prediction 

operation using RCP 2.6 (Figure 6), the most influential 

environmental variable in R. tuberosa plant breeding 

process is BIO 4 (Temperature Seasonality), whereas using 

RCP 8.5 (Figure 6), the most influential variable in the 

plant breeding process R. tuberosa is BIO 19 (Coldest 

Quarter Precipitation). Based on the results of the Jackknife 

2080 modeling prediction operation using RCP 2.6 (Figure 

6), the environmental variables that have the most 

influence in R. tuberosa plant breeding process are BIO 19 

(Precipitation of Coldest Quarter) and BIO 6 (Min 

Temperature of Coldest Month), while using RCP 8.5 

(Figure 6) The most influential variable in the reproduction 

process of R. tuberosa is BIO 6, namely (Min Coldest 

Month Temperature).  
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Table 3. Contribution of environmental parameters to the distribution of Ruellia tuberosa  

 

Current 2030 RCP 8.5 2050 RCP 8.5 2080 RCP 8.5 2030 RCP 2.6 2050 RCP 2.6 2080 RCP 2.6 

Variable 
Percent 

Contribution 
Variable 

Percent 

Contribution 
Variable 

Percent 

Contribution 
Variable 

Percent 

Contribution 
Variable 

Percent 

Contribution 
Variable 

Percent 

Contribution 
Variable 

Percent 

Contribution 

BIO 4 22.8 BIO 9 17.6 BIO 19 17.8 BIO 9 16.4 BIO 6 15 BIO 4 21.1 BIO 9 14.6 

BIO 2 17.2 BIO 4 13.7 BIO 9 14.1 BIO 19 15.2 BIO 9 12.9 BIO 9 15.1 BIO 4 13.7 

BIO 3 6.8 BIO 12 9.6 BIO 2 10.3 BIO 3 15.2 BIO 4 12.9 BIO 12 12.6 BIO 17 12.1 

BIO 16 6.6 BIO 17 9 BIO 18 9.2 BIO 7 8.1 BIO 17 12.4 BIO 17 10.4 BIO 6 11.1 

SRAD1 6.3 BIO 19 8.5 BIO 12 8.4 BIO 17 5.4 BIO 19 11.3 BIO 6 9.5 BIO 3 9.3 

BIO 11 5.7 BIO 16 7.6 BIO 6 8 BIO 6 5.2 BIO 16 8.1 BIO 15 6 BIO 16 7.3 

BIO 12 5 BIO 2 6.5 BIO 17 7.6 BIO 18 5.2 BIO 12 5.6 BIO 16 5.4 BIO 15 7.1 

BIO 19 4.8 BIO 15 4.9 BIO 15 5 BIO 15 5.1 BIO 15 5.5 BIO 2 4.9 BIO 19 5.9 

SRAD7 4.6 BIO 8 4.4 BIO 7 4.8 BIO 16 4.8 BIO 3 4.8 BIO 19 4.8 BIO 12 5.5 

BIO 8 3.8 BIO 6 4 BIO 3 3.5 BIO 2 4 BIO 7 3.9 BIO 3 2.7 BIO 2 4.1 

SRAD3 3 BIO 18 3.7 BIO 8 3.4 BIO 8 3 BIO 10 2.5 BIO 14 1.8 BIO 14 3.6 

BIO 7 2.3 BIO 3 2.8 BIO 16 3.3 BIO 10 3 BIO 8 1.9 BIO 5 1.4 BIO 8 1.4 

BIO 15 1.9 BIO 7 2.1 BIO 4 2.9 BIO 13 2.7 BIO 5 1.2 BIO 8 1.4 BIO 13 1.4 

BIO 5 1.7 BIO 11 2.1 BIO 11 1.1 BIO 5 2.6 BIO 14 1 BIO 18 1.4 BIO 18 1.3 

BIO 6 1.3 BIO 13 1.3 BIO 1 0.3 BIO 4 2.1 BIO 11 0.6 BIO 7 0.7 BIO 7 1.1 

Elevation 1.2 BIO 1 1.1 BIO 13 0.3 BIO 11 1.7 BIO 1 0.2 BIO 11 0.4 BIO 11 0.4 

BIO 17 1.2 BIO 14 0.6 BIO 5 0 BIO 12 0.1 BIO 13 0.1 BIO 1 0.2 BIO 10 0.1 

BIO 13 1.1 BIO 10 0.4 BIO 14 0 BIO 1 0.1 BIO 18 0 BIO 10 0 BIO 5 0.1 

SRAD9 0.9 BIO 5 0.1 BIO 10 0 BIO 14 0 BIO 2 0 BIO 13 0 BIO 1 0 

SRAD4 0.4             

SRAD2 0.3             

SRAD5 0.3             

SRAD10 0.3             

BIO 14 0.2             

BIO 18 0.2             

SRAD12 0.1             

BIO 9 0             

SRAD11 0             

BIO 1 0             

SRAD6 0             

SRAD8 0             

BIO 10 0             
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Figure 5. The results of the Jackknife of variable's contributions in 2023 
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Figure 6. The influence of environmental variables on the distribution of Ruellia tuberosa: A. In 2030 using RCP 2.6; B. In 2030 using 

RCP 8.5; C. In 2050 using RCP 2.6; D. In 2050 using RCP 8.5; E. In 2080 using RCP 2.6; F. In 2080 using RCP 8.5 

 

 

Based on research from Putri et al. (2019), who used 

jackknife operations to determine the suitability of frog 

habitat on Java Island, the results obtained were that land 

cover, temperature, and drought had a big influence on 

modeling, namely jackknife modeling. As in the modeling 

carried out by Putri et al. (2019), to determine the influence 

of environmental variables on jackknife operation, the test 

AUC value and the regularized training gain value obtained 

due to the treatment of environmental variables that have 

been determined are needed. The greater the AUC test 

value and regularized training gain resulting from using 

certain environmental variables, the higher the 

classification of these environmental variables as factors 

that influence the modeling created. 

The areas of Java Island and Madura Island have 

environmental characteristics suitable for the growth of R. 

tuberosa, especially in certain areas with warm or hot 

climates. Geographical conditions Java island has an 

average annual temperature of 22-29°C; this condition 

causes the growth of R. tuberosa so fast on the island of 

Java, especially in urban areas such as Jakarta and 

Surakarta, as shown by the red map. Environmental 

conditions that tend to be warm are favored. Therefore, the 

spread of this plant is very fast. Likewise, in the Madura 

Island area, some areas have a temperature climate suitable 

for overgrowth and the development of R. tuberosa. 

Discussion 

From the map analysis of the estimated distribution of 

R. tuberosa growth in 2030, 2050, and 2080 using the RCP 

8.5 scenario, there is a significant decrease in the 

distribution of this plant from one year to another. Through 

the analysis, the main parameters that dominantly affect the 

distribution of R. tuberosa are BIO 9 or Mean Temperature 

of Driest Quarter, BIO 2 or Mean Diurnal Range, BIO 3 or 

Isothermality, BIO 4 or Temperature Seasonality, BIO 12 

or Annual Precipitation, and BIO 19 or Precipitation of 

Coldest Quarter. BIO 9 describes the average temperature 

of a region's hottest year. Changes in elevated temperature 

and precipitation totals in the Driest quarter in the RCP 8.5 

scenario are key factors leading to a sharp decline in the 

distribution of this crop. This indicates that extreme 

temperatures in summer, or the quarter with the highest 

temperatures of the year, have major implications for the 

availability of suitable habitats for the growth of R. 

tuberosa (Seerangaraj et al. 2021). Ruellia tuberosa also 

has tuberous roots and an intelligent seed dispersal system 

to help it survive the dry season and multiply (Singh et al. 

2023). In comparison, in the rainy season, it often grows as 

a weed (Kathiravan et al. 2018). Besides temperature, 

climate change also has the potential to disrupt other 

parameters that support plant growth, such as air humidity, 

rainfall, and interactions with other flora and fauna (Tram 

and Quach 2022). Warmer temperature conditions and total 

rainfall in the quarter are believed to be the main factors 

forming a more conducive habitat for the growth and 

spread of R. tuberosa (De Freitas et al. 2020). Increasingly 

unsuitable environmental conditions, ever-increasing 

temperatures, the coldest cold weather, and too great a 

difference in mean highest and lowest temperatures could 

lead to a further decline in its distribution range (Arun et al. 

2022). Drastic changes occur because climatic conditions, 

which include very high temperatures and overall 

ecosystem changes, can cause a significant decrease in the 

habitat that supports the growth of this plant (Ernakovich et 

al. 2014). 

The estimated distribution map of R. tuberosa plant 

growth in 2030, 2050, and 2080 using the RCP 2.6 scenario 

illustrates a consistent increase from one decade to the 

next. Many parameter changes strongly influence this in 

key environmental parameters that play a role in forming 

suitable habitats for the growth of these plants. The most 

influential parameters in each year are different. Through 

this analysis, the main parameters that dominantly affect 

the distribution of R. tuberosa are BIO 6 or Minimum 

Temperature of the Coldest Month, BIO 4 or Temperature 
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Seasonality, BIO 9 or Mean Temperature of Driest Quarter, 

BIO 12 or Annual Precipitation, and BIO 17 or 

Precipitation of Driest Quarter. All three parameters 

highlight the role of temperature in influencing the 

distribution and growth of R. tuberosa. Plant adaptation to 

temperature conditions that vary from month to month, 

season to season, and quarter to quarter is key in exploiting 

or utilizing climate change for the future expansion of these 

plant-growing areas. The minimum temperature in the 

coldest months is a critical factor affecting the adaptation 

and growth of this plant. Temperature conditions during 

this period can determine the availability of supportive 

habitat for R. tuberosa (Harika and Radhika 2021). 

Relatively stable temperatures between seasons reduce 

extreme fluctuations, providing more predictive and 

suitable environmental conditions for these plants to 

multiply (Wulandari and Tamam 2021). The increase in 

temperature in the warmest quarter of the year expands the 

distribution area suitable for the growth of R. tuberosa. 

Warmer temperature changes in the warmest quarter allow 

this plant to grow in areas that may not have previously 

supported its growth well (Harinath et al. 2019). 

Ruellia tuberosa is one species of plant that has the 

ability to grow invasively, so it has the potential to cause 

significant disturbance in some areas. Therefore, effective 

control of the spread of R. tuberosa is needed to minimize 

negative impacts and protect other biodiversity. One of the 

effective and affordable ways that can be done to control 

the spread of R. tuberosa is to utilize it for various useful 

purposes. One of the benefits of R. tuberosa is that it can be 

used as a diabetes medicine. This plant contains various 

pharmacological benefits such as antioxidants, anti-

inflammatory, and anticancer, antinociceptive, antipyretic, 

antidiuretic, analgesic, diuresis, antihypertensive, 

antioxidant, insecticide, anticancer, and antidote poison 

agent (Ko et al. 2019; Hepni et al. 2021; Kannan et al. 

2021; Annisa et al. 2022). The use of R. tuberosa plant in 

Indonesia for medicine is not without reason, because R. 

tuberosa plant contains many phytochemicals that can be 

used to treat diabetes (Wati and Anisatu 2023). According 

to research from Rahmi et al. (2014), extracts from R. 

tuberosa leaves have hypoglycemic activity which can be 

used to treat diabetes mellitus. Compounds such as 

alkaloids, flavonoids, triterpenoids, steroids and saponins 

which can be used as medicine are found in R. tuberosa 

plant. These compounds may contribute to lowering blood 

sugar levels by increasing insulin sensitivity or involving 

mechanisms that inhibit glucose absorption in the 

gastrointestinal tract (Ko et al. 2018).  

Predicted future changes in temperature and rainfall 

will also influence the distribution of local species. Species 

performances and survival are expected to change in a non-

uniform manner across the landscape (Barton et al. 2019). 

Predicted future changes in temperature and rainfall will 

also influence the distribution of local species. Local 

species that are unable to adapt to climate change cannot 

compete with invasive foreign species that have higher 

adaptability. As species may be unable to disperse, 

establish, or adapt quickly enough to keep up with a 

warming climate (Aitken and Whitlock 2013). Ways to 

mitigate invasive foreign species include controlling or 

eradicating them to prevent the entry and development of 

invasive species (Orapa 2017). Efforts to eradicate invasive 

species can use several methods, including functional 

eradication involving clear and dominant ecological 

mechanisms. Many predators can attack invasive species 

for functional eradication, as prey for consumption. In 

addition, several attributes of the recipient ecosystem 

configuration will support the success of functional 

eradication, giving rise to resistance that creates 

dependence on the state of the invasive species ecosystem 

which is influenced by stressors such as habitat degradation 

and exploitation (Green and Grosholz 2021). Not only 

controlling their invasive growth, but also providing added 

value to health and natural resource utilization. Through 

innovative approaches, we can turn a plant that was 

initially considered a weed into something useful for 

society and the environment. While the use of R. tuberosa 

can be used for a variety of purposes including medicinal, 

its use as a dispersal control is only temporary. While this 

plant can provide benefits as a substitute in some situations, 

its role tends to be substitutive and unreliable in the long 

term (Chothani et al. 2010). These limitations emphasize 

the importance of developing more effective and reliable 

alternatives (Sharma et al. 2023). Further research and 

development is needed to fully understand the potential and 

limitations of this plant so that it can be optimally used in 

various applications.  

In conclusion, the distribution of R. tuberosa is 

currently seen in most of Java and Madura, which dominate 

areas with very low suitability. Some areas also have low 

suitability, which is more obvious than areas with medium 

suitability. From the analysis of the map of the estimated 

distribution of R. tuberosa plant growth in 2030, 2050, and 

2080, there is a significant decrease in the distribution of 

this plant from one year to year because there was 

significant climate change in that year, which was caused 

by an increase in CO2 levels, which led to global climate 

change, thus affecting the growth of invasive plants. The 

main parameter that predominantly influences the spread of 

R. tuberosa is BIO 9 (Mean Temperature of Driest 

Quarter).  
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