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Abstract. Hanum U, Dianti, Safitri RN, Pratiwi VMR, Hermawan WG, Indrawan M, Setyawan AD. 2024. Ecological change detection 
in PT. Semen Gresik Rembang, Indonesia (limestone mining) activities between 2016 to 2022. Intl J Trop Drylands 8: 59-68. Limestone 

mining, such as at the PT. Semen Gresik Rembang (Persero) Tbk in Rembang District, East Java Province, Indonesia, impacts long-term 
environmental changes. One way to minimize environmental impacts due to mining activities is through remote sensing and Geographic 
Information Systems (GIS) to determine the dynamics of landscape management. This study aims to assess ecological changes due to 
the cement industry or limestone mining activities in Rembang between 2016 to 2022, the assessment was carried out by considering the 
dynamics of land use-land cover (LULC), and measuring the emergence of water bodies and the dynamics of vegetation productivity. 
The data used includes Landsat 7 ETM+ satellite image data in 2016 and three Landsat 8 OLI/ TIRS satellite image data in 2018, 2020, 
and 2022 with a 30 m spatial resolution. Therefore, satellite image data is collected before image processing, including correction, band 
merging, and cropping. The maximum likelihood image classification technique was used to analyze the dynamics of land use, land 
cover, and the growth of water bodies. Changes in vegetation productivity were analyzed with NDVI. In the LULC analysis, an 

accuracy test has been conducted with satisfactory results of more than 0.81. In the occurrence of water bodies with LULC analysis, it is 
known that there is a possible occurrence of water bodies in the form of ex-mining ponds. During the vulnerable years of 2016 to 2022, 
it is known that the area of the water body increased by 5.26 hectares. The vegetation productivity results show that those area's 
productivity is improving; the increase in water body cover is associated with decreased vegetation land cover by 18.58 hectares and 
open land cover by 8.71 hectares. The increase in mining land coverage between 2016 and 2022 is 38.07 hectares; meanwhile, the 
increase in built-up land area from 2016 to 2022 also increased by 15.88 hectares. Thus, remote sensing and GIS can be used to 
determine the dynamics of landscape management in an area. 
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INTRODUCTION 

Indonesia possesses abundant natural resources that are 

crucial for human existence. These resources can be classified 

into two categories: renewable and non-renewable natural 

resources (Astuti and Simandjuntak 2018). Renewable natural 

resources are resources that can be replenished at a relatively 

fast rate, either through natural processes or human-made 

technology. Non-renewables are natural resources that can 

be regenerated, but the process takes a significant amount 

of time (Pongtuluran 2015). Raw materials and minerals, 

including metals, coal, and karst rock, are examples of non-

renewable natural resources (Risal et al. 2017).  
Activities in the utilization of non-renewable natural 

resources are mining activities (As'ari et al. 2019). Mining 

is one of the natural resource utilization activities that 

support the country's economic development due to its role 

as a resource provider that is indispensable for the 

economic growth of a country (Ericsson and Löf et al. 

2019). Along with the times, the demand for mining products 

in the future is increasing (Tabelin et al. 2021). This has led 

to the growth of mining companies in Indonesia because it 

has a huge attraction for investors (Sutomo et al. 2020).  

One of the mining companies in Indonesia is PT. 

Semen Gresik Rembang (Persero) Tbk, a state-owned 

company that produces various types of cement and 

strongly desires to mine karst rocks as raw material for 

cement (Hidayatullah et al. 2016; Dharmawan et al. 2020). 

The increasing demand for cement raw materials has 

encouraged this company to build a new cement plant in 

Rembang District, Central Java (Wasito and Syaikhudin 

2020). Mining activities pose a high risk to the 

environment, both the biological, physical and social 

environments (Mohsin et al. 2021; Haddaway et al. 2022). 

Mining activities impact environmental changes, such as 
geological changes, namely soil movement, collisions with 

mining cavities, aquifer deformation, and other negative 

impacts (Simion et al. 2021). Karst areas will be vulnerable 

to rocks collapsing due to natural conditions. Failure to 

exercise caution and disregard for the environmental 

fragility might result in the destabilization of karst rocks by 

the utilization of excessive vibrations in mining operations 

(Wei et al. 2023). Karst mining has the potential to 

diminish the amount of water and cause contamination of 

groundwater in karst water systems (Fang and Fu 2011). 

These alterations will have long-term repercussions on the 
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ecosystem, including degradation of flora, creation of 

sinkholes, soil erosion, flooding, and contamination of soil 

and water. Even after restoration, if not done appropriately, 

these harmful impacts will persist (Agboola et al. 2020). 

According to the Law of the Republic of Indonesia Number 

32 of 2009 Article 1 Number 16 (UU RI No. 32/2009; 

Wicaksono 2022), concerning Environmental Protection 

and Management described that "Environmental 

destruction is people's action who cause direct or indirect in 

the biological, physical, and/or chemical properties changes 
of the environment that exceeds the standard criteria for 

environmental damage." 

Dynamic landscape management is a method that can 

be employed to reduce the environmental effects of mining 

activities (Saining et al. 2023). Landscape management is a 

comprehensive endeavor that involves organizing and 

utilizing the environment's upkeep, conservation, regulation, 

and enhancement to create a landscape that is advantageous 

to both humans and other organisms (Arroyo‐Rodríguez et 

al. 2020). An effective method for monitoring short-term 

changes in the landscape involves evaluating the 
fluctuations in water bodies and vegetation over a period of 

time. These changes can yield significant data on enduring 

geological phenomena such as land subsidence, sinkhole 

development, and water table dynamics, as well as their 

environmental consequences (Padmanaban et al. 2017). 

Assessing the geological changes in active mining and 

reclamation regions is significantly influenced by changes 

in vegetation productivity (Vorovencii 2021).  

The Geographic Information System (GIS) techniques 

and remote sensing are the monitoring tools to assess 

landscape dynamics, both long-term and short-term (Erener 
2011; Ranjan et al. 2022; Li et al. 2024). This technique is 

highly efficient compared to other techniques because it 

does not require expensive equipment and shortens 

research time and data processing (Orimoloye and Ololade 

2020). Landsat 8 images with 30 m resolution are excellent 

for monitoring the health of vegetation in mining areas 

(Erener 2011). Multispectral satellite imagery in this 

technique allows for detecting landscape changes over time 

(Wijaya 2015). This technique can also be used in 

monitoring and assessing mining impacts on the landscape 

and environment and associated geological changes and 

vegetation productivity dynamics. The Normalized Water 
Body Difference Index (MNDWI) and Normalized 

Difference Vegetation Indeks (NDVI) time series are used 

to identify and monitor rehabilitation progress and inform 

reclamation success (Erener 2011). The accuracy value in 

monitoring land use/land cover dynamics using this 

technique is overall above 91.55% (Owolabi 2020). This 

research aims to assess the dynamics of Land Use and Land 

Cover (LULC) in 2016, 2018, 2020, and 2022 in the mining 

activity and reclaimed area, measure the occurrence and 

growth of water bodies, and assess vegetation productivity 

dynamics of PT. Semen Gresik Rembang, Indonesia.  

MATERIALS AND METHODS 

Study area 

The study area is Gunem and Bulu Sub-districts, 

Rembang District, Central Java, Indonesia, i.e. the 

limestone mining site of PT. Semen Gresik Rembang, 

Indonesia. The mine reclamation area is located between 

6°51'49.64"S-111°27'59".33"E and 6°51'59.74"S-

111°28'15.44"E with a total area of approximately 3.78 km2 

(Figure 1).  

 

 

 
 

Figure 1. Site location of PT. Semen Gresik Rembang Factory in Rembang District, Central Java, Indonesia 
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This mining site was selected because the site carried 

out by PT. Semen Gresik Rembang was only opened in 

2017. This can be seen in the satellite imagery on Google 

Earth, where land changes began to appear in 2017 and 

developed until 2022. Therefore, satellite data was 

collected from 2016 to 2022 to compare environmental 

conditions before and after the site's development. This 

research area includes the ownership area of the PT. Semen 

Gresik Rembang and the green belt areas located around 

the factory area. Therefore, from October to November 
2023, data was processed using Landsat 8 and Landsat 7 

images in 2016, 2018, 2020, and 2022. Figure 2 is a picture 

of the condition of the mining area at the study site, and the 

image is obtained from Google (Penamerahputih.com 

2017; Nasional.tempo.co 2017). 

Data collection procedures 

Satellite data 

The data used in this study includes Landsat 7 

Enhanced Thematic Mapper plus (ETM+) satellite image 

data in 2016 and three Landsat 8 Operational Land 

Thermal Infrared Sensor (TIRS)/Operational Land Imager 
(OLI) satellite image data covering the years 2018, 2020, 

and 2022 with a spatial resolution of 30 m. The clipping of 

Landsat 8 OLI/TIRS satellite imagery should be consistent 

every year so that the landscape dynamics can be seen from 

the higher quality imagery compared to other Landsat 

satellites (Estoque and Murayama 2015). Furthermore, the 

satellite imagery utilized in this investigation was chosen 

based on the minimum proportion of pixel values within a 

single cloud cover that obscures the land surface in the 

Landsat data (referred to as Land Cloud Cover) (Zhu and 

Woodcock 2012). Nevertheless, in 2016, the Landsat 8 
OLI/TIRS satellite imagery had the lowest proportion of 

pixel values affected by cloud cover. Thus, this study 

employed Landsat 7 ETM+ satellite image data from 2016. 

Hence, the chosen Landsat satellite photos spanned a 

duration of four years, allowing for the examination of 

short-term changes in the terrain. These images were 

acquired at no cost from the United States Geological 

Survey (USGS) gateway, as stated by Padmanaban (2012). 

Image processing 

Prior to analyzing satellite image data, preprocessing of 

the satellite image data is conducted. The pre-processing of 

satellite image data involves performing image correction, 

combining bands, and cropping the image based on the 

research region. In 2016, the Landsat 7 ETM+ satellite 

image data had scan line errors. To fix this, the Scan Line 

Corrector (SLC)-off Gap Landsat 7 tool was used to rectify 

the faults and create mosaics. Any residual gaps were then 

adjusted using histogram correction, as described by Chen 

et al. (2011). The image data utilized in this study 

underwent image correction by Top-of-Atmosphere (TOA) 

using QGIS. Furthermore, the process of radiometric 
correction was conducted to identify and quantify 

alterations in the landscape. This was achieved by utilizing 

the characteristics provided in the ETM+ metadata, 

specifically the Top-of-Atmosphere (TOA) radiance, as 

described by Chander et al. (2009). The rectified satellite 

image data was blended by amalgamating bands 1, 2, 3, 4, 

5, and 7 to process the image using the highest likelihood 

approach. The subsequent step involves the segmentation 

of satellite image data using the Area of Interest (AOI) that 

has been established according to the specific geographical 

area of the research location. 

Data analysis 

Land use and land cover classification and accuracy 

assessment 

Analyzed utilizing image classification techniques, the 

study examined four years of surface-level landscape 

processes. Subsequently, the photos from 2016, 2018, 

2020, and 2022 were categorized into five distinct Land 

Use and Land Cover (LULC) classes, as shown in Table 1. 

The greatest likelihood classification technique was utilized 

to optimize the proximity of data points (Goslee 2011; 

Madasa et al. 2021). LULC classification was performed 
using the maximum likelihood method using ArcGIS 

software. 
 

 
Table 1. Land Use and Land Cover (LULC) classification  
 

LULC classes Land uses involved in the class 

Vegetation Land Forests, gardens, and shrubs  
Open Soil Roads, unirrigated land, and dry land 
Built-up Land Factory building  

Water Body Open water 
Mining Land Mining 

 
 

  
 
Figure 2. Location of PT. Semen Gresik Rembang in Rembang District, Central Java Province, Indonesia 
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The image classification accuracy was evaluated by 

comparing the classified LULC map with USGS EROS 

reference images from 2016 to 2022 of the study area 

obtained from the Google Earth platform. The accuracy 

assessment generated 100 randomly scattered points using 

the ArcGIS tool the Accuracy Assessment Point tool and 

extracted the values for four different study year periods 

(Assal et al. 2015). Subsequently, a set of arbitrary values 

was chosen, specifically obtained from Google Earth, and 

subsequently compared to the LULC map. In Stehman's 
(1996) study, the kappa coefficient was used to measure 

image accuracy. A kappa coefficient value greater than 0.8 

implies that the categorized image is highly accurate and 

comparable to the reference data, as mentioned by Islami et 

al. (2022). 

Vegetation productivity 

NDVI analysis is used to determine the amount of 

vegetation productivity at PT. Semen Gresik Rembang 

during 2016-2022 every 2 years. According to Rouse et al. 

(1974), the following is the NDVI formula equation: 
 

 
 

Where: NIR: Near Infrared Band value; R: Red band 

value recorded by Landsat 8 imagery 

 

The NDVI method utilizes the near-infrared band value 

and red band value to determine the relative density of 
green vegetation at PT. Semen Gresik Rembang. The 

NDVI value was categorized into different categories 

according to the density level. These ranges include non-

vegetation (lowest value-0.1), open soil (0.1-0.2), sparse 

vegetation (0.2-0.4), moderate vegetation (0.4-0.6), and 

high vegetation (0.6-highest). The ranges are derived from 

the USGS website (USGS 2018) and have been adapted by 

the authors. The assessment of vegetation productivity change 

was conducted in 2016, 2018, 2020, and 2022 utilizing 

ArcGIS 10.8 software. 

RESULTS AND DISCUSSION 

Landscape dynamics at the PT. Semen Gresik Rembang 

in 2016-2022 

Figure 3 shows the LULC map of the PT. Semen Gresik 

Rembang plant area obtained in 2016, 2018, 2020, and 

2022 using Maximum Likelihood classification. The area 

of interest includes land outside their ownership because it 

is easier to classify landscape dynamics on land around PT. 

Semen Gresik Rembang Factory. Based on the accuracy 

test results, an overall accuracy value of more than 80% 

was obtained for the classified LULC maps for all years 

with a kappa coefficient average value is 0.84 (Table 2). 

These values indicate the classified LULC maps have 

satisfactory accuracy. 

The maximum likelihood method in ArcGIS software is 

used to assess land changes based on spatial analysis after 

analyzing changes in land size in the PT. Semen Gresik 

Rembang area. The spatial maps acquired are displayed in 

Figure 3, while the land class areas are presented in Table 
3, providing a comparison of land use and land cover. The 

land classes examined in this study include vegetative land, 

open soil, built-up land, water bodies, and mining land. 

Figure 3 illustrates the comparison of land classes between 

2016 and 2022, revealing a noticeable rise in land coverage 

in built-up areas, aquatic bodies, and mining sites. Table 3 

reveals that the land area difference between 2016 and 

2022, namely in the built-up land category, exhibits a 15.88 

ha rise. The water body classes from 2016 to 2022 indicate 

a land expansion of 5.26 hectares, while the mining land 

classes during the same period demonstrate a land 
expansion of 38.07 hectares. Upon closer examination, it 

can be noticed that the water body area in the form of 

ponds increased in 2018 (14.72 hectares) and 2020 (23.98 

hectares), but dropped in 2020 (5.26 hectares). Millán et al. 

(2014) found that as water bodies expand, it leads to a fall 

in groundwater levels and also causes changes in them. 

Decreasing groundwater levels can result in collisions with 

exposed mining structures, infiltration of groundwater, and 

floods on the surface (Liu and Zhang 2023). 

The expansion in land area in the water body and 

mining land class categories appears to be substantial 
during the transition from 2016 to 2018, given there were 

no water bodies or mining land present in these areas in 

2016. Subsequently, there was a reduction in land area 

within the vegetated land and open soil categories. Table 3 

reveals that the land area difference between 2016 and 

2022 indicates a drop of -18.58 ha in the vegetation land 

class and a loss of -8.71 ha in the open soil class. The 

vegetated land underwent substantial changes throughout 

the years. 
 
Table 2. The image classification accuracy by test matrix value 
2016-2022 
 

Years 
Accuracy test matrix value 

User accuracy Kappa 

2016 0.92 0.80 
2018 0.92 0.84 
2020 0.90 0.81 
2022 0.95 0.89 

 
Table 3. Comparison of Land Use and Land Cover (LULC) types during 2016-2022 
 

Classes LULC 
Land area (Ha) Difference (Ha) 

2016-2022 2016 2018 2020 2022 
Vegetation land 495.55 459.50 456.79 476.97 -18.58 
Open soil 120.48 142.96 142.19 111.77 -8.71 
Built-up Land 48.37 48.93 49.56 64.25 15.88 
Water body - 14.72 23.98 5.26 5.26 
Mining land - 5.36 16.85 38.07 38.07 
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Figure 3. Map of Land Use and Land Cover (LULC) at PT. Semen Gresik Rembang, Indonesia in 2016, 2018, 2020, and 2022 
 
 

 

In 2016, the area measured 495.55 ha, which declined 
to 459.50 ha in 2018 and further to 456.79 ha in 2020. 

However, in 2022, there was a notable increase to 476.97 

ha. Despite this increase, the vegetated land in 2022 is still 

smaller than the vegetated land in 2016. Within the open 

soil class, the land area had a growth of 142.96 hectares 

from 2016 to 2018, followed by a reduction to 142.19 

hectares in 2020 and further down to 111.77 hectares in 

2022. The conversion of open space to built-up land has led 

to a significant decline in vegetative land, plantations, and 

agricultural land mostly because of the fall in groundwater 

levels (Besser and Hamed 2021). 

Occurrence and growth of water bodies 

Through the LULC classification that has been carried 

out, the land use area for water bodies at the study site has 

been identified (Figure 4). The water body will likely be an 

ex-mining pond filled with rainwater (Gautama 1994). 

Water puddles that fill the mine pits are also called voids, 

which become a storage area for runoff and rainwater in a 

topography lower than the surrounding area with 

compacted soil conditions (Sahu et al. 2016). Voids are 

categorized as dangerous because their depth reaches an 

average of 4 meters, especially if there are no warning 

signals. In addition, mine pits are dangerous because they 
contain residual excavated materials such as acid mine 

drainage, which is unsuitable for the growth and 

development of flora and fauna and is at risk of fatalities if 

contaminated (Yunanto et al. 2021). 

Moreover, from 2016 to 2022 (Figure 4), water bodies 

began to appear in 2018 because the mining process at this 

location had not yet been carried out in 2016. In 2020, the 

area of the water body was the largest, with a land coverage 

of 23.98 ha; this indicates that mining activities have been 

carried out, but ex-mining pits have not been managed. The 

area of the water body continued to decrease in the 
following years by -5.26 ha in 2022. The decrease in area 

of water bodies suspected to be void has decreased from 

2018 to 2022 due to the possibility that the ex-mining pit 

reclamation has begun by the PT. Semen Gresik Rembang. 

One of the reclamation management activities that has been 

carried out by its group companies, PT. Semen Gresik 

Tuban is the reclamation of limestone mining land into 

Bukit Daun Park, which is located in Tuban District, East 

Java, built as a conservation and tourist destination in 2018. 

In addition, a form of post-mining land reclamation is 

usually carried out before becoming a tourist attraction 

2018 

 
2016 

 

2022 

 
2020 
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through replanting teak (Tectona grandis) and trembesi 

(Samanea saman) trees covering an area of 6.8 hectares in 

2019 (Siregar et al. 2020).  

Vegetation land cover dynamics 

Figure 5 shows the NDVI map of PT. Semen Gresik 

Rembang in 2016, 2018, 2019, and 2020, respectively. The  

map shows the productivity of improving vegetation areas 

yearly, with the high vegetation area expanding in 2022 

compared to 2016. The map also illustrates the decreasing 

area of non-vegetation; in 2016, the area of non-vegetation 

was larger than in 2022. Sparse and moderate vegetation 

areas dominated the PT. Semen Gresik Rembang area in 

2020 prediction (Padmanaban et al. 2017). 
 
 
 

 
 

Figure 4. Changes in the location of water body occurrence and growth in 2018, 2020, and 2022 at the PT. Semen Gresik Rembang, 
Indonesia 

 
 

 

 
 

Figure 5. Map of vegetation productivity at PT. Semen Gresik Rembang, Indonesia, in 2016, 2018, 2020 and 2022 
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Figure 6. Vegetation productivity at PT. Semen Gresik Rembang, Indonesia in 2016, 2018, 2020, and 2022 
 
 

Table 4. Vegetation change in the PT. Semen Gresik Rembang, Indonesia coverage area in 2016, 2018, 2020, and 2022 
 

Vegetation 

productivity class 
NDVI value 

Change in area coverage (Ha)  Difference (Ha) 

2016-2022 2016 2018 2020 2022 

Non vegetation  lowest value-0.1 133.51 (19.63%) 5.61 (0.82%) 10.98 (1.61%) 5.10 (0.75%) -128.41 
Open soil 0.1-0.2 88.44 (13.00%) 41.32 (6.08)% 27.88 (4.10%) 25.09 (3.69%) -63,35 
Sparse vegetation 0.2-0.4 417.94 (61.44%) 94.58 (13.91%) 161.30 (23.71%) 43.49 (6.40%) -374,45 
Moderate vegetation 0.4-0.6 40.38 (5.94%) 288.07 (42.36%) 372.26 (54.72%) 126.76 (18.64%) 86,38 
High vegetation 0.6-highest value - 250.45 (38.83%) 107.85 (15.85%) 479.65 (70.53%) 479.65 

 
 

 

Moreover, Table 4 and Figure 6 show a significant 

change in vegetation productivity at PT. Semen Gresik 
Rembang, which is associated with an increase and 

decrease in the area. The non-vegetation area in 2016 was 

the highest at 133.51 ha and about 19.63% of the total area 

at 680.26 ha; Figure 6 shows a decrease to -5.61 ha in 2018 

and briefly increased to 10.98 ha in 2020 and then fell back 

to -5.10 ha in 2022. The decrease in the non-vegetation 

area is good for the ecosystem because the area is covered 

with a high vegetation area again. The PT. Semen Gresik 

Rembang vegetation area has increased productivity due to 

the company's concern for the surrounding vegetation by 

promoting reforestation activities. PT. Semen Gresik 
Rembang developed a green belt area to change the 

limestone mining areas, once barren, to greener 

environments (Dewi 2016). These greening areas are 

evidenced by the value of vegetation productivity for the 

classification of high vegetation areas, which was worth 0 

ha in 2016 and can increase rapidly to 479.65 ha or about 

70.53% in 2022. The open soil area continues to decline 

from 2016 at 88.44 ha to about 25.09 ha in 2022. The 

decline is insignificant because it is dominated by the 

increase and decrease in sparse, moderate, and high 

vegetation areas. The sparse vegetation class experienced a 
decreased area in 2018 to 94.58 ha, increased in 2020 to 

161.30 ha, and decreased in 2022 to 43.49 ha. Moderate 

vegetation from 2016 to 2020 increased from 40.38 ha to 

372.26 ha but decreased in 2022 to 126.76 ha. The decrease 

in moderate vegetation is due to the change of vegetation to 

high vegetation (Padmanaban et al. 2017). 

Discussion 

According to Table 3, the LULC data, the total area of 
vegetative land in 2016 was 495.55 hectares. Table 4 

presents the NDVI findings, indicating that no vegetation 

was observed in the sparse and moderate classes under the 

high vegetation category. The extent of vegetation classified 

as sparse has both reduced and increased. However, in 

2022, it reached 43.49 hectares, indicating a fall in the 

sparse vegetation category. The moderate vegetation class 

experienced significant growth in area between 2018 and 

2020, growing from 40.38 hectares to 288.07 hectares and 

further to 372.26 hectares. Nevertheless, the vegetation 

class categorised as moderate experienced a reduction to a 
value of 126.76. The levels of vegetation had both 

increases and decreases, but in 2022, there was a 

significant addition of 479.65 hectares. In 2016, according 

to Table 3, the land class with the highest vegetation was 

seen, despite the fact that the vegetation was higher 

compared to the subsequent year. The environmental 

circumstances in 2022 had improved characteristics, as 

seen by the heightened productivity of plants, which was 

bolstered by elevated NDVI values. Ultimately, the current 

vegetation was characterized by a scarcity of plant life and 

a moderate amount of vegetation. This is consistent with 
the study conducted by Johansen and Tømmervik (2014). 

They found a strong association between NDVI derived 

from vegetation communities and recorded phytomass, 

indicating a close relationship. 

Therefore, comparing the results between LULC and 

NDVI may not be accurate, and this is because the two 
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methods have different analytical (da Silva et al. 2020); the 

different analytical methods comparison are not appropriate. 

However, in this study, the NDVI results can be used to 

determine the vegetation level, including low-class, medium-

class, and high-class vegetation. Therefore, we can at least 

know whether the vegetation areas detected using the 

LULC method have good productivity of land cover by 

vegetation. Higher NDVI values indicate more vegetation 

on the land cover than lower NDVI values (Akbar et al. 

2020). Based on this, the NDVI value can be used to 
determine the level of health and productivity of existing 

vegetation in this research. Even though the vegetation area 

in 2022 will not be as much as in 2016 (Table 3), at least 

the reclamation and revegetation efforts of mining land 

operated by the former mining pit of the PT. Gresik Semen 

Rembang is showing quite good results. Environmental 

improvement efforts can be maintained to achieve 

maximum results in the return to normal conditions; if 

possible, increasing the reclamation and revegetation of 

mining land is necessary. Revegetation of tailing dumps 

improves soil quality through aesthetic improvement, 
stabilization, pollution control, and soil fertility (Buta et al. 

2019). This study also demonstrated how revegetating 

abandoned mine lands restored their ecological integrity 

and self-sustainability, leading to significant improvements 

in soil quality.  

Moreover, PT. Semen Gresik Rembang land clearing 

for mining has changed the open or vegetation land into 

built-up and mining land. Furthermore, this research begins 

in 2016 to 2022 because land clearing and built-up 

development began in 2017 and shows an increase in 

mining and built-up land areas. The most significant 
increase occurred between 2020 and 2022 because the 

mining land area doubled. Research conducted by Shen and 

Zeng (2022) shows that land clearing for mining sites has 

also increased rapidly in certain years, changing 

groundwater levels. A continuous increase in built-up and 

mining lands in mining areas can cause collisions with 

unburied mine workings, groundwater intrusion, and 

surface flooding (Liu and Zhang 2023). However, 

reclamation has been conducted at this research location, 

hopefully avoiding possible environmental risks. 

The results of this study are similar to previous research 

conducted by Firozjaei et al. (2021), which indicated that 
forest cover and green open space decreased from 9,950 

hectares in 1989 to 5,900 hectares in 2019 for Sungun mine 

in Iran; from 42.14 hectares in 1999 to 33.09 hectares in 

2019 for Athabasca oil sands in Canada; from 231.46 

hectares in 1996 to 263.95 hectares in 2016 for Singrauli 

coalfield in Indian; and from 180.38 hectares in 1989 to 

133.99 hectares in 2017 for Hambach mine, as a result of 

the expansion and development of mineral activities. The 

results in Sungun indicate that in the future, by 2039, there 

is likely to be a decrease in forest cover and green open 

space by 15% of the total study area, resulting in a decrease 
in mean NDVI of almost 0.06 and an increase in 

standardized mean Land Surface Temperature (LST) from 

0.52 in 2019 to 0.61 in 2039. The study in Sungun shows 

that in the future, by 2039, there will most likely be a 

decrease in forest and green open space cover by 15% of 

the total study area, resulting in a decrease in mean NDVI 

of almost 0.06 and an increase in mean standardized Land 

Surface Temperature (LST) from 0.52 in 2019 to 0.61 in 

2039. Research conducted by Firozjaei et al. (2021) 

showed that for the Athabasca oil sands (Singrauli 

coalfield, Hambach mine), the average standardized LST 

and NDVI values will change from 0.5 (0.44 and 0.4) and 

0.38 (0.38; 0.35) in 2019 (2016; 2017) to 0.57 (0.5; 0.47) 

and 0.33 (0.32; 0.28) in 2039 (2036; 2035). This is mainly 

due to increased past and future mining activity (Firozjaei 
et al. 2021). Therefore, the potential for mining land 

degradation is higher if mining activities are carried out 

continuously without adequate environmental 

conservation efforts. 

In conclusion, the difference in land area of PT. Semen 

Gresik Rembang in 2016-2022, i.e., the built-up land class, 

shows an increase in the amount of land of 15.88 hectares. 

The water body classes 2016-2022 show a land increase of 

5.26 hectares, and the mining land classes 2016-2022 show 

a land increase of 38.07 hectares. The difference in land 

area in 2016-2022, i.e.: the vegetation land class showed a 
decrease in land area of -18.58 hectares, while the open soil 

class experienced a decrease of -8.71 hectares. Vegetated 

land has changed significantly; where in 2016, an area of 

495.55 hectares decreased in 2018 (459.50 hectares) and 

2020 (456.79 hectares) and increased quite high in 2022 to 

476.97 hectares, but the area of vegetated land in 2022 is 

still not as large as the vegetated land in 2016. In the open 

soil class, there was an increase in land area from 2016 to 

2018, which was 142.96 hectares, and then decreased in 

2020 and 2022 to 142.19 hectares and 111.77 hectares, 

respectively. The results of the LULC analysis of water 
bodies show that there is a possibility that water bodies are 

formed from former mining ponds, and in the prone years 

2016 to 2022, it is known that the area of water bodies will 

decrease because of the PT. Semen Gresik Rembang 

manages those areas. The addition of vegetated land is 

accompanied by an increase in NDVI values, where the 

highest NDVI values in 2016, 2018, 2020, and 2022 are 

0.5, 0.79, 0.82, and 0.85, respectively. This indicates that 

the study area has vegetation with better productivity from 

year to year. Better vegetation productivity indicates that 

PT. Semen Gresik Rembang has care and concern for the 

environment. 
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