Effect of phytase and citric acid supplementation in the feed quality of laying hen

##plugins.themes.bootstrap3.article.main##

YULI FRITA NUNINGTYAS
ASRI NURUL HUDA
MARJUKI
SITI NUR ULFAH

Abstract

Abstract. Nuningtyas YF, Huda AN, Marjuki, Ulfah SN. 2022. Effect of phytase and citric acid supplementation in the feed quality of laying hen. Asian J Agric 6: 55-60. This study aims to determine and evaluate the combination of phytase and high dosage of citric acid on the feed quality based on seeds. This study used data experimental at Brawijaya University, Malang, Indonesia, with five treatments and four replications. This research analyzes the nutritional feed content in vitro digestibility and phosphorus content in concentrate. The result of the study was a basal feed of laying hens followed by a dry matter of 90.63%, organic matter of 81.92%, crude protein of 16.44%, crude fiber of 4.34%, and fat of 7.49%. The basal laying hen feed without adding phytase enzyme and citric acid had a relatively low phosphorus content of 0.43%. It would be limited due to the absence of phytic acid breakdown assistance from the phytase enzyme. The nutrient phosphorus content in the residual feed digestibility is sequent T0 2.2431%, T1 2.7809%, T2 1.6225%, T3 2.0717%, and T4 2.7199%, with T4 for the higher value and the lowest in T2. The addition of the phytase enzyme and citric acid to animal feed for laying hens with various levels has a significant difference (P<0.01) when viewed at the end of the digestibility of phosphor. However, the T2 laying hens feed with the addition of 2% phytase enzyme + 2% citric acid had the lowest phosphorus content in residue feed digestibility in vitro. Therefore, further research should be carried out in-vivo testing, especially on laying hens, to determine the effectiveness of the added enzymes by using the in-vivo test and the amount of phosphorus.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Alagawany M, Elnesr SS, Farag MR, Tiwari R, Yatoo MI, Karthik K. 2021. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health. Vet Quart 41: 1. DOI: 10.1080/01652176.2020.1857887.
Andri, Harahap RP, Tribudi YA. 2020. Estimasi dan validasi asam amino metionin, lysin, dan threonin dari pakan bijian sebagai sumber protein nabati. JNT 3: 1. DOI: 10.21776/ub.jnt.2020.003.01.4. [Indonesian]
Association of Official Analytical Chemists (AOAC). 2012. Method Phytase Activity In Feed: Colorimetric Enzymatic Method. In Official Methods of Analysis of AOAC International. 17th Edition. Arlington, VA. [USA]
Bhavsar K, Kumarb VR, Khirea JM. 2012. Downstream processing of extracellular fitase from Aspergillus niger: Chromatography process vs. aqueous two-phase extraction for its simultaneous partitioning and purification. Process Biochem 47: 1. DOI: 10.1016/j.procbio.2012.03.012.
Cano IG, Mendoza DR, Kosmerl E, Zhang L, Flores RJ. 2020. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity. Appl Microb Biol 10: 1.
Dersjant-Li Y, Dusel G. 2019. Increasing the dosing of a Buttiauxella phytase improves phytate degradation, mineral, energy, and amino acid digestibility in weaned pigs fed a complex diet based on wheat, corn, soybean meal, barley, and rapeseed meal. J Anim Sci 97: 2524. DOI: 10.1093/jas/skz151.
Dersjant-Li, Awati YA, Schulze H, Partridge G. 2015. Phytase in non-ruminant animal nutrition: A critical review on phytase activities in the gastrointestinal tract and influencing factors. J Sci Food Agri 95: 5. DOI: 10.1002/jsfa.6998.
El-Hack MEA, Alagawany M, Arif M, Emam M, Saeed M, Arain, MA, Siyal FA, Patra A, Elnesr SS, Khan RU. 2018. The uses of microbial phytase as a feed additive in poultry nutrition. Ann Anim Sci 18: 3. DOI: 10.2478/aoas-2018-0009.
Engelen AJ, Van Der Heeft FC, Randsdorp PHG, Smit ELC. 1994. Simple and rapid determination of phytase activity. J AOAC Intl 77: 760. DOI: 10.1093/jaoac/77.3.760.
Greiner R, Farouk A, Alminger ML, Carlsson NGS. 2002. The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytate degrading enzymes of different Bacillus spp. Can J Microb 48: 11. DOI: 10.1139/w02-097.
Haese E. 2017. Studies on the Extent of Ruminal Degradation of Phytate from Different Feedstuffs. [Dissertation]. Hohenheim University, Germany. [Germany]
Harper AF, Kornegay ET, Schell TC. 1997. Phytase supplementation of low phosphorus growing-finishing pig diets improves performance, phosphorus digestibility, and bone mineralization and reduces phosphorus excretion. J Anim Sci 75: 3174. DOI: 10.2527/1997.75123174x.
Huber K, Zeller E, Rodehutscord M. 2015. Modulation of small intestinal phosphate transporter by dietary supplements of mineral phosphorus and phytase in broilers. Poult Sci 94: 1009. DOI: 10.3382/ps/pev065.
Humer E, Schwarz C, Schedle K. 2015. Phytate in pig and poultry nutrition. J Anim Physiol Anim Nutr 99: 4. DOI: 10.1111/jpn.12258.
Jain J, Sapna, Singh B. 2016. Characteristics and biotechnological applications of bacterial phytases. Process Biochem 51: 159. DOI: 10.1016/j.procbio.2015.12.004.
Kühn I, Schollenberger M, Männer K. 2016. Effect of dietary phytase level on intestinal phytate degradation and bone mineralization in growing pigs. J Anim Sci 94: 264. DOI: 10.2527/jas.2015-9771.
Kumar V, Sinha AK, Makkar HPS, Becker K. 2010. Dietary roles of phytate and phytase in human nutrition. Food Chem 120: 945. DOI: 10.1016/j.foodchem.2009.11.052.
Lamid M, Puspaningsih NNT, Asmarani O. 2014. Potential of phytase enzymes as biocatalysts for improved nutritional value of rice bran for broiler feed. J Appl Environ 4: 3.
Lamid, M, Arif AA, Asmarani, Warsito SH. 2018. Characterization of phytase enzymes as feed additive for poultry and feed. IOP Conf Ser Earth Environ Sci 137: 1. DOI: 10.1088/1755-1315/137/1/012009.
Long CJ, Kondratovich LB, Westphalen MF, Stein HH, Felix TL. 2017. Effects of exogenous phytase supplementation on phosphorus metabolism and digestibility of beef cattle. Trans Anim Sci 1: 168. DOI: 10.2527/tas2017.0020.
Nisa AK, Yuanita L. 2014. Pengaruh asam sitrat dan fitase Bacillus subtilis holiwood gresik pada jagung (Zea mays L.) terhadap daya cerna protein dan bioavailabilitas zink. J Chem 3: 1. [Indonesian]
Olukosi OA. 2012. Biochemistry of phytate and phytases: Applications in monogastric nutrition. Intl J Nig Soc Exp Biol 24: 58.
Pires EBE, Freitas AJD, Souza FFE, Salgado RL, Guimarães VM, Pereira FA, Eller MR. 2019. Production of fungal phytases from agroindustrial byproducts for pig diets. Sci Rep 9: 1. DOI: 10.1038/s41598-019-45720-z.
Pramita DS, Handajani S, Rachmawanti D. 2008. The effect of heating technique to phytic acid content and antioxidant activity of velvet bean (Mucuna pruriens), butter bean (Phaseolus lunatus) and jack bean (Canavalia ensiformis). Biofarmasi 6: 36-44. DOI: 10.13057/biofar/f060202.
Rodriguez LMV, Herrera JG, Morales EJ, Garcia JLA, Pozos RL, Ruelas G. 2015. Effect of citric acid, phytase, and calcium in diets of laying hens on productive performance, digestibility, and mineral excretion. Intl J Poult Sci 14: 4. DOI: 10.3923/ijps.2015.222.228.
Rokhmah LN, Anam C, Handajani S, Rachmawati D. 2009. Study of phytic acid and protein contents during velvet beans (Mucuna pruriens) tempe production with variation of size reduction and fermentation time. Biofarmasi 7: 1-9. DOI: 10.13057/biofar/f070101.
Samtiya M, Aluko RE, Dhewa T. 2020. Plant food anti-nutritional factors and their reduction strategies. Food Prod Process Nutr 2: 6. DOI: 10.1186/s43014-020-0020-5.
Selle PH, Cowieson AJ, Cowieson NP, Ravindran V. 2012. Protein–phytate interactions in pig and poultry nutrition: A reappraisal. Nutr Res Rev 25: 1-17. DOI: 10.1017/S0954422411000151.
Selle PH, Ravindran V. 2007. Microbial phytase in poultry nutrition. Anim Feed Sci Technol 135: 41. DOI: 10.1016/j.anifeedsci.2006.06.010.
Simons PC, Versteegh HAJ. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br J Nutr 64: 525-540. DOI: 10.1079/BJN19900052.
Sommerfeld V, Huber K, Bennewitz J, Silva AC, Hasselmann M, Ponsuksili S, Seifert J, Stefanski V, Wimmers K, Rodehutscord M. 2020. Phytate degradation, myo-inositol release, and utilization of phosphorus and calcium by two strains of laying hens in five production periods. J Poult Sci 99: 8. DOI: 10.1016/j.psj.2020.08.064.
Standar Nasional Indonesia. 2006. SNI 01 - 3929- 2006: Pakan Ayam Ras Petelur (layer). Badan Standarisasi Nasional, Jakarta. [Indonesian]
Vieira BS, Barbosa SAPV, Tavares JMN, Corrêa GSS. 2016. Phytase and protease supplementation for laying hens in peak egg production. Semina: Ciencias Agrarias 37 (6): 4285. DOI: 10.5433/1679-0359.2016v37n6p4285.
Wiyantoko B, Muzdalifah M, Kurniawati P, Purbaningtias TE. 2018. Validation on analysis method for phosphorus in solid inorganic fertilizer using UV-visible spectrophotometry. AIP Conf Proc 2026: 020045. DOI: 10.1063/1.5065005. [Indonesian]
Xu H, Yun S, Wang C, Wang Z, Han F, Jia B, Chen J, Li B. 2020. Improving performance and phosphorus content of anaerobic co-digestion of dairy manure with aloe peel waste using vermiculite. Bioresour Technol 301: 1. DOI: 10.1016/j.biortech.2020.122753.
?yla K. 1993. The role of acid phosphatase activity during enzymic dephosphorylation of phytases by Aspergillus niger phytase. World J Microb Biot 9: 117. DOI: 10.1007/BF00656531.