In-vitro efficacy of Trichoderma isolates on Sclerotium rolfsii causing collar rot of chili

##plugins.themes.bootstrap3.article.main##

DHARMENDRA YADAV
AAKASH ADHIKARI
BABITA DHUINGANA
HARI GURUNG
NABARAJ KHATRI
SHISHIR PANDIT

Abstract

Abstract. Yadav D, Adhikari A, Dhuingana B, Gurung H, Khatri N, Pandit S. 2022. In-vitro efficacy of Trichoderma isolates on Sclerotium rolfsii causing collar rot of chili. Asian J Agric 6: 97-102. The experiment was conducted in the Nepal polytechnic institute plant pathology laboratory to study the in-vitro efficacy of Trichoderma isolates on Sclerotium rolfsii Sacc. collar of chili, Bharatpur, Chitwan, Nepal by dual culture technique. The experiment was carried out in a completely randomized design (CRD) with four replications. The Trichoderma isolates, namely Kapilvastu isolate, Kavre isolates, Salyan isolates, Lalitpur isolates, and Taplejung isolates, were used in the experiment. The mycelium growth was measured at 2 DAI, 4 DAI, 6 DAI, 8 DAI, and 10 DAI. Also, the number of sclerotia, days to sclerotia, and width of the browning area at the interception region of interception were measured in 10 DAI. All the Trichoderma isolates significantly affect mycelium growth and the number of sclerotia formed. Among all the Trichoderma isolates, Kavre isolates show a good result with (74.44%) followed by Salyan isolates (74.22%) and Lalitpur isolates (73.55%) inhibition in the mycelium growth and several sclerotia (9.6~10) also formed. The lowest number of sclerotia was observed in Salyan isolates, which was three days, followed by Kapilvastu isolate, i.e., 20 days. The antagonist Kavre isolate can be used as a bio-control agent against S. rolfsii of chili in Nepal.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Agrios GN. 2005. Plant pathology. 5th Edition. In: Root and Stem Rots Caused by Basidiomycetes. Elsevier Academic Press, USA.
Ali A, Javaid A, Shoaib A, Khan IH. 2020. Effect of soil amendment with Chenopodium album dry biomass and two Trichoderma species on growth of chickpea var. Noor 2009 in Sclerotium rolfsii contaminated soil. Egypt J Biol Pest Control 30: 102. DOI: 10.1186/s41938-020-00305-1.
Aycock R. 1966. Stem Rot and Other Diseases Caused by Sclerotium rolfsii: or the Status of Rolfs’ Fungus After 70 Years. North Carolina State Univ., US.
Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA. 2011. Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Molecular Plant-Microbe Interactions: MPMI 24 (3): 336-351. DOI: 10.1094/MPMI-09-10-0221.
Bastakoti S, Belbase S, Manandhar S, Arjyal C. 2017. Trichoderma species as biocontrol agent against soil borne fungal pathogens. Nepal J Biotechnol 5 (1): 39-45. DOI: 10.3126/njb.v5i1.18492.
Chet I, Harman GE, Baker R. 1981. Trichoderma hamatum: Its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7 (1): 29-38. DOI: 10.1007/BF02010476.
Darvin G, Venkatesh I, Reddy NG. 2013. Evaluation of Trichoderma spp. against Sclerotium rolfsii in vitro. Intl J Appl Biol Pharm Technol 4 (4): 268-272.
Daunde AT, Apet KT, Suryawanshi AP, Khandare VS. 2018. Prevalence of collar rot of chili caused by Sclerotium rolfsii Sacc. under the agro-climatic zones of Marathwada region of Maharashtra. J Pharmacogn Phytochem 7 (4): 1905-1908.
de Mendiburu F. 2014. Agricolae version 1.1-8 Practical Manual. La Molina National Agrarian University, Lima, Peru.
Dennis C, Webster J. 1971. Antagonistic properties of species groups of Trichoderma. III. Hyphal interaction. Trans Brit Mycol Soc 57 (3): 363-369. DOI: 10.1016/S0007-1536(71)80050-5.
Dos AFD, Dhingra OD. 2011. Pathogenicity of Trichoderma spp. on the sclerotia of Sclerotinia sclerotiorum. Canad J Bot 60 (4): 472-475. DOI: 10.1139/B82-064.
Elad Y, Barak R, Chet I. 1984. Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum. Soil Biol Biochem 16 (4): 381-386. DOI: 10.1016/0038-0717(84)90037-3.
Eziashi EI, Uma NU, Adekunle AA, Airede CE. 2006. Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. Afr J Biotechnol 5 (9): 703-706. DOI: 10.3923/pjbs.2006.1987.1990.
FAO. 2019. Food and Agriculture Organization of the United Nations Statistics Division. (Accessed 23 February 2021). http://www.fao.org/faostat/en/data/QC/visualize/.
Fery RL, Dukes PD. 2011. Southern blight (Sclerotium rolfsii Sacc.) of cowpea: Genetic characterization of two sources of resistance. Intl J Agron 2011: 652404. DOI: 10.1155/2011/652404.
Gurha SN, Dubey RS. 1982. Occurrence of possible sources of resistance in chickpea (Cicer arietinum L.) against Sclerotium rolfsii Sacc. Madras Agric J 70: 63-64.
Haque MMM, Siddique MAB, Meah MB, Islam MN. 2001. Control of foot rot of brinjal through chemicals and organic soil amendments. Sci J Biol Sci 1 (10): 946-948. DOI: 10.3923/jbs.2001.946.948.
Harman GE, Howell CR. Viterbo A, Chet I, Lorito M. 2004. Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2 (1): 43-56. DOI: 10.1038/nrmicro797.
Iqbal U, Mukhtar T. 2020. Evaluation of biocontrol potential of seven indigenous Trichoderma species against charcoal rot causing fungus, Macrophomina phaseolina. Gesunde Pflanzen 72 (2): 195-202. DOI: 10.1007/s10343-020-00501-x.
Jabeen N, Javaid A, Shoaib A, Khan IH. 2021. Management of southern blight of bell pepper by soil amendment with dry biomass of Datura metel. J Plant Pathol 103 (3): 901-913. DOI: 10.1007/s42161-021-00874-6.
Javaid A, Afzal R, Shoaib A. 2020. Biological management of southern blight of chili by Penicillium oxalicum and leaves of Eucalyptus citriodora. Intl J Agric Biol 23 (1): 93-102. DOI: 10.17957/IJAB/15.1263.
Javid M, Khan FN, Arif U. 2022. Income and price elasticities of natural gas demand in Pakistan: A disaggregated analysis. 2022: 106203. DOI: 10.1016/j.eneco.2022.106203.
Jeeva ML, Hegde V, Makeshkumar T, Nair RR, Edison S. 2005. Dioscorea alata, a new host of Sclerotium rolfsii in India. Plant Pathol 54 (4): 574-574. DOI: 10.1111/j.1365-3059.2005.01204.x.
Jegathambigai V, Wilson Wijeratnam RS, Wijesundera RLC. 2010. Effect of Trichoderma sp. on Sclerotium rolfsii, the causative agent of collar rot on Zamioculcas zamiifolia and an on farm method to mass produce Trichoderma species. Plant Pathol 9 (2): 47-55. DOI: 10.3923/PPJ.2010.47.55.
Khan IH, Javaid A, Ahmed D. 2021. Trichoderma viride controls Macrophomina phaseolina through its DNA disintegration and production of antifungal compounds. Intl J Agric Biol 25 (4): 888-894. DOI: 10.1080/00275514.2021.1990627.
Khan IH, Javaid A, Al-Taie AH, Ahmed D. 2020. Use of neem leaves as soil amendment for the control of collar rot disease of chickpea. Egypt J Biol Pest Control 30: 98. DOI: 10.1186/s41938-020-00299-w.
Khan IH, Javaid A. 2020. In vitro biocontrol potential of Trichoderma pseudokoningii against Macrophomina phaseolina. Intl J Agric Biol 24 (4): 730-736.
Mahadevakumar S, Chandana C, Deepika YS, Sumashri KS, Yadav V, Janardhana GR. 2018. Pathological studies on the southern blight of China aster (Callistephus chinensis) caused by Sclerotium rolfsii. Eur J Plant Pathol 151 (4): 1081-1087. DOI: 10.1007/s10658-017-1415-2.
Mishra BK, Mishra RK, Mishra RC, Tiwari AK, Yadav RS, Dikshit, A. 2011. Biocontrol efficacy of Trichoderma viride isolates against fungal plant pathogens causing disease in Vigna radiata L. Arch Appl Sci Res 3 (2): 361-369.
Mullen J. 2000. Southern Blight, Southern Stem Blight, White Mold. The Plant Health Instructor. DOI: 10.1094/PHI-I-2001-0104-01.
Mycocosm 2021. https://mycocosm.jgi.doe.gov/mycocosm/home, accessed on 19 December 2021
Ordóñez-Valencia C, Ferrera-Cerrato R, Quintanar-Zúñiga RE, Flores-Ortiz CM, Guzmán GJM, Alarcón A, García-Barradas O. 2015. Morphological development of sclerotia by Sclerotinia sclerotiorum: A view from light and scanning electron microscopy. Annals Microbiol 65 (2): 765-770. DOI: 10.1007/s13213-014-0916-x.
Pandey A, Devkota S. 2020. Prospects and challenges of sugarcane development in Nepal: Production, market and policy. Am J Agric Biol Sci 15 (1): 98-106. DOI: 10.3844/ajabssp.2020.98.106.
Pandey P, Gaire SP. 2019. Effect of different media on mycelium growth of Sclerotium rolfsii Sacc. in vitro condition. Intl J Environ Agric Biotechnol 4 (4): 1195-1198. DOI:10.22161/IJEAB.4445.
Piay SS, Tyasdjaja A, Ermawati Y, Hantoro FRD. 2010. Budidaya dan Pascapanen Cabai Merah (Capsicum annuum). Balai Pengkajian Teknologi Pertanian Jawa Tengah, Badan Penelitian dan Pengembangan Pertanian. [Indonesian]
R Core Team. 2013. R A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
Rasu T, Sevugapperumal N, Thiruvengadam R, Ramasamy S. 2013. Biological control of sugarbeet root rot caused by Sclerotium rolfsii. Intl J Biol Ecol Environ Sci 2: 7-10.
Sain SK, Pandey AK. 2016. Efficacy of three isolates of Trichoderma harzianum Rifai against major fungal pathogens of tomato. Phytopathology 69 (4): 510-515.
Sanchez V, Rebolledo O, Picaso RM, Cardenas E, Cordova J, Samuels GJ. 2006. In vitro antagonism of Theieloviopsis paradoxa by Trichoderma longibrachiatum. Mycopathologia 163: 49-58. DOI: 10.1007/s11046-006-0085-y.
Shaigan S, Seraji A, Moghaddam SAM. 2008. Identification and investigation on antagonistic effect of Trichoderma spp. on tea seedlings white foot and root rot (Sclerotium rolfsii Sacc.) in vitro condition. Pak J Biol Sci 11 (19): 2346-2350. DOI: 10.3923/PJBS.2008.2346.2350.
Sharf W, Javaid A, Shoaib A, Khan IH. 2021. Induction of resistance in chili against Sclerotium rolfsii by plant growth promoting rhizobacteria and Anagallis arvensis. Egypt J Biol Pest Control 31: 16. DOI: 10.1186/s41938-021-00364-y.
Singh U, Thapliyal PN. 1998. Effect of inoculum density, host cultivars and seed treatment on the seed and seedling rot of soybean caused by Sclerotium rolfsii. Indian Phytopathol 51 (3): 244-246.
Singh UB, Malviya D, Singh S, Kumar M, Sahu PK, Singh HV, Kumar S, Roy M, Imran M, Rai JP, Sharma AK, Saxena AK. 2019. Trichoderma harzianum-and methyl jasmonate-induced resistance to bipolaris sorokiniana through enhanced phenylpropanoid activities in bread wheat (Triticum aestivum L.). Front Microbiol 10: 1697. DOI: 10.3389/fmicb.2019.01697.
Swart WJ, Tesfaendrias MT, Terblanche J. 2003. First report of Sclerotium rolfsii on kenaf in South Africa. Plant Dise 87 (7): 874-874. DOI: 10.1094/PDIS.2003.87.7.874A.
Vincent JM. 1947. Distortion of fungal hyphae in the presence of certain inhibitors. Nature 159 (4051): 850. DOI: 10.1038/159850B0.
Yanti Y, Astuti FF, Habazar T, Nasution CR. 2016. Screening of rhizobacteria from rhizosphere of healthy chili to control bacterial wilt disease and to promote growth and yield of chili. Biodiversitas 17: 1-9. DOI: 10.13057/biodiv/d180101.