Assessment of genetic diversity among sweet potato varieties through RAPD markers in the Southern coastal region of Bangladesh

##plugins.themes.bootstrap3.article.main##

AHSAN HABIB SAIMON
SABIHA SULTANA
https://orcid.org/0000-0002-8285-3909
MD. ABDUL MANNAN
https://orcid.org/0000-0002-8685-831X
ABDULLAH AL MAMUN
https://orcid.org/0000-0002-5420-088X

Abstract

Abstract. Saimon AH, Sultana S, Mannan MA, Mamun AA. 2023. Assessment of genetic diversity among sweet potato varieties through RAPD markers in the Southern coastal region of Bangladesh. Asian J Agric 7: 116-121. Sweet potato (Ipomoea batatas (L.) Lam.) is the sixth most significant food crop. Evaluating this crop's genetic diversity is crucial for food security and preserving agricultural genetic resources. Bangladesh is South Asia's second-largest sweet potato producer, but little is known about the genetic diversity of this crop there. The study aimed to assess the genetic diversity among six sweet potato varieties (Five BARI-released sweet potato varieties: BARI Misty Alu-10, BARI Misty Alu-11, BARI Misty Alu-12, BARI Misty Alu-14, BARI Misty Alu-15, and a local cultivar) using RAPD marker in the Southern coastal region of Bangladesh. Six primers were utilized to determine the polymorphic and monomorphic bands. Data was analyzed using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram and Principal Component Analysis (PCA). Thirty-seven polymorphic bands were found, with an average of 3 polymorphic and 3.17 monomorphic bands. Primer OPM-02 showed the highest polymorphic bands (6). The results showed that BARI Misty Alu-10 and BARI Misty Alu-15 had the most genetic diversity, at 37%. The average polymorphism percentage was 44.88%. The dendrogram featured two distinct clusters that showed BARI Misty Alu-12, the most distant variety. The clustering pattern corresponded with PCA, demonstrating that BARI Misty Alu-12 had the most genetic variation (81.36%).

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Ahmed MT, Nath SC, Sorwar MA, Rashid MH. 2015. Cost-effectiveness and resource use efficiency of sweet potato in Bangladesh. J Agric Econ Rural Dev 2 (2): 26-31.
Bhadauriya PS, Deo C, Ram CN, Verma SK, Singh S. 2018. Studies on genetic variability, heritability, genetic advance, correlation coefficient and D2 analysis in sweet potato. Indian J Hill Farming 31 (1): 207-213.
Bhanupriya B, Satyanarayana N, Mukherjee S, Sarkar K. 2014. Genetic diversity of wheat genotypes based on principal component analysis in gangetic alluvial soil of West Bengal. J Crop Weed 10 (2): 104-107.
Bovell-Benjamin AC. 2007. Sweet potato: A review of its past, present, and future role in human nutrition. Adv Food Nutr Res 52: 1-59. DOI: 10.1016/S1043-4526(06)52001-7.
Cadima FX, Van TR, Hoekstra R, van den Berg RG, Sosef MSM. 2017. Genetic diversity of Bolivian wild potato germplasm: Changes during ex situ conservation management and comparisons with resampled in situ populations. Genet Resour Crop Evol 64: 331-344. DOI: 10.1007/s10722-015-0357-9.
CIP 2019. Institutional brochure. International Potato Center, Lima, Peru. https://hdl.handle.net/10568/99442
FAOSTAT 2020. Statistics division of food and agriculture organization of the United Nations. http://www.fao.org/faostat/en/#data/QCL
Flint-Garcia SA. 2013. Genetics and consequences of crop domestication. J Agric Food Chem 61 (35): 8267-8276. DOI: 10.1021/jf305511d.
Goncalves LSA, Rodrigues R, Amaral Júnior AD, Karasawa M, Sudre CP. 2008. Comparison of multivariate statistical algorithms to cluster tomato heirloom accessions. Genet Mol Res 7 (4): 1289-1297. DOI: 10.4238/vol7-4gmr526.
Hughes AR, Inouye BD, Johnson MT, Underwood N, Vellend M. 2008. Ecological consequences of genetic diversity. Ecol Lett 11 (6): 609-623. DOI: 10.1111/j.1461-0248.2008.01179.x.
Jolliffe IT. 1986. Principal Component Analysis. Springer-Verlag, Berlin. DOI: 10.1007/978-1-4757-1904-8.
Kandan A, Akhtar J, Singh B, Dixit D, Chand D, Agarwal P C, Roy A, Rajkumar S. 2013. Population genetic diversity analysis of Bipolaris oryzae fungi infecting Oryza sativa in India using URP markers. Ecoscan 7 (3&4): 123-128.
Lebot V. 2010. Sweet potato. In: Bradshaw JE (eds). Root and Tuber Crops: 97-125. Springer, New York. DOI: 10.1007/978-0-387-92765-7_3.
Lee KJ, Lee GA, Lee JR, Sebastin R, Shin MJ, Cho GT, Hyun DY. 2019. Genetic diversity of sweet potato (Ipomoea batatas [L.] Lam) germplasms collected worldwide using chloroplast SSR markers. Agronomy 9 (11): 752. DOI: 10.3390/agronomy9110752.
Mahmud AA, Alam MJ, Heck S, Grüneberg WJ, Chanda D, Rahaman EHMS, Molla MSH, Anwar MM, Talukder MAH, Ali MA, Amin MN, Alhomrani M, Gaber A, Hossain A. 2021. Assessing the productivity, quality and profitability of orange fleshed sweet potatoes grown in riverbank of the Tista floodplain agro-ecological zone of Bangladesh. Agronomy 11 (10): 2046. DOI: 10.3390/agronomy11102046.
Moghaieb RE, Abdelhadi AA, El-Sadawy HA, Allam NA, Baiome BA, Soliman MH. 2017. Molecular identification and genetic diversity among Photorhabdus and Xenorhabdus isolates. 3 Biotech 7 (1): 1-9. DOI: 10.1007/s13205-016-0594-4.
Moulin MM, Rodrigues R, Gonçalves LSA, Sudré CP, Pereira MG. 2012. A comparison of RAPD and ISSR markers reveals genetic diversity among sweet potato landraces (Ipomoea batatas (L.) Lam.). Acta Sci Agron 34: 139-147. DOI: 10.4025/actasciagron.v34i2.12616.
Muhammed A, Aksel R, Borstel RC. 2012. Genetic Diversity in Plants 1st Ed. Springer, New York. DOI: 10.1007/978-1-4684-2886-5.
Nusifera S, Alia Y. 2019. RAPD-PCR primer selection to analyze genetic diversity of cinnamon plant. IOP Conf Ser Earth Environ Sci 391 (1): 012002. DOI: 10.1088/1755-1315/391/1/012002.
Onda Y, Mochida K. 2016. Exploring genetic diversity in plants using high-throughput sequencing techniques. Curr Genomics 17 (4): 358-367. DOI: 10.2174%2F1389202917666160331202742.
Rashid MH, Afroz S, Gaydon D, Muttaleb, A, Poulton P, Roth C, Abedin Z. 2014. Climate change perception and adaptation options for agriculture in Southern Khulna of Bangladesh. Appl Ecol Environ Sci 2 (1): 25-31. DOI: 10.12691/aees-2-1-4.
Reshma RS, Das DN. 2021. Molecular markers and its application in animal breeding. In: Mondal S, Singh RL (eds). Advances in Animal Genomics: 123-140. Academic Press, Massachusetts. DOI: 10.1016/B978-0-12-820595-2.00009-6.
Rohlf FJ. 2002. Geometric Morphometrics and Phylogeny. CRC Press, Boca Raton.
Roullier C, Kambouo R, Paofa J, McKey D, Lebot V. 2013. On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity. Heredity 110 (6): 594-604. DOI: 10.1038/hdy.2013.14.
Samiyarsih S, Fitrianto N, Azizah E, Herawati W, Rochmantino. 2020. Anatomical profile and genetic variability of sweet potato (Ipomoea batatas) cultivars in Banyumas, Central Java, based on RAPD markers. Biodiversitas 21 (4): 1755-1766. DOI: 10.13057/biodiv/d210460.
Shah RM, Saad MS, Idris NIM, Rafdi HHM. 2018. Genetic relationship of sweet potato (Ipomoea batatas) accessions from Malaysia and Indonesia using RAPD markers. Malays Appl Biol 47 (4): 153-159.
Singh DP, Deo C, Gautam DK, Kumar R, Kumar P. 2017. Studies on genetic diversity for yield, growth and quality traits in sweet potato [Ipomoea batatas (L.) Lam.]. Intl J Curr Res Biosci Plant Biol 4 (4): 113-117. DOI: 10.20546/ijcrbp.2017.404.017.
Soegianto A, Ardiarini NR, Sugiharto AN. 2011. Genetic diversity of sweet potato (Ipomoea batatas L.) in East Java, Indonesia. J Agric Food Technol 1(9): 179-183.
Sthapit B, Rana R, Eyzaguirre P, Jarvis D. 2008. The value of plant genetic diversity to resource-poor farmers in Nepal and Vietnam. Intl J Agric Sustain 6 (2): 148-166. DOI: 10.3763/ijas.2007.0291.
Sun H, Mu T, Xi L, Zhang M, Chen J. 2014. Sweet potato (Ipomoea batatas L. Lam) leaves as nutritional and functional foods. Food Chem 156: 380-389. DOI: 10.1016/j.foodchem.2014.01.079.
Sun Y, Pan Z, Yang C, Jia Z, Guo X. 2019. Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea batatas) storage roots. Molecules 24 (24): 4476. DOI: 10.3390/molecules24244476.
Tikendra L, Potshangbam AM, Dey A, Devi TR, Sahoo MR, Nongdam P. 2021. RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. var. oculatum Hk.f.-an important endangered orchid. Physiol Mol Biol Plants 27: 341-357. DOI: 10.1007/s12298-021-00939-x.
Tosti N, Negri V. 2002. Efficiency of the PCR-based markers in assessing genetic variation among cowpea (Vigna ungiculata spp. unguiculata) landraces. Genome 45: 268-275. DOI: 10.1139/g01-146.
Veasey EA, Borges A, Rosa MS, Queiroz-Silva JR, Bressan EDA, Peroni N. 2008. Genetic diversity in Brazilian sweet potato (Ipomoea batatas (L.) Lam., Solanales, Convolvulaceae) landraces assessed with microsatellite markers. Genet Mol Biol 31: 725-733. DOI: 10.1590/S1415-47572008000400020.
Verma KS, Kachhwaha S, Kothari SL. 2017. RAPD and ISSR marker assessment of genetic diversity in Citrullus colocynthis (L.) Schrad: A unique source of germplasm highly adapted to drought and high-temperature stress. 3 Biotech 7 (5): 1-24. DOI: 10.1007%2Fs13205-017-0918-z.