Effect of brown algae as biofertilizer materials on pepper (Capsicum annuum) growth, yield, and fruit quality

##plugins.themes.bootstrap3.article.main##

SAID BAROUD
SAIDA TAHROUCH
ABDELHAKIM HATIMI

Abstract

Abstract. Baroud S, Tahrouch S, Hatimi A. 2024. Effect of brown algae as biofertilizer materials on pepper (Capsicum annuum) growth, yield, and fruit quality. Asian J Agric 8: 25-31. Our study aims to evaluate the effect of three brown algae, Cystoseira gibraltarica (Sauvageau) P.J.L.Dangeard, Bifurcaria bifurcata R.Ross, and Fucus spiralis L., as biofertilizers on pepper (Capsicum annuum L.). These three algae were applied in two forms and at different concentrations: amendment (C1, C2, and C3) and concentrations of aqueous extract (0.5%, 1%, and 2%). Generally, the studied parameters were significantly improved using the aqueous extracts or the amendment at low concentrations. Indeed, the extract of F. spiralis at 1% shows a maximum length of the aerial and root parts (75.8 and 33.2 cm, respectively) and the dry weight of the plants (9.88 g). Aqueous extracts of F. spiralis at 1% show the maximum values of organic matter and nitrogen content of pepper leaves (88.3% and 4.4%, respectively). In addition, the 0.5% B. bifurcata extract presented significant values for the number of flowers (8.8 flowers/plant), and the 1% F. spiralis extract showed a better result for the number of fruits (7.1 fruits/plant). The alga C. gibraltarica at 1% showed a maximum fruit weight (82.65 g). On the other hand, F. spiralis at 1% showed maximum values of fruit diameter (48.33 mm). Similarly, F. spiralis at 0.5% showed maximum values in brix and sugar content (5.33% and 5.4%, respectively). These three algae were found to be effective and good candidates for the efficient development of biostimulants to improve growth and yield as well as the fruit quality of pepper. This study provides important information on identifying and utilizing Moroccan algal resources in agriculture.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
AFNOR NNFX. 1988. NFX 50-120-ISO 8402. AFNOR, Paris.
Ali N, Farrell A, Ramsubhag A, Jayaraman J. 2016. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. J Appl Phycol 28: 1353-1362. DOI: 10.1007/s10811-015-0608-3.
Bozorgi HR. 2012. Effects of foliar spraying with marine plant Ascophyllum nodosum extract and nano iron chelate fertilizer on fruit yield and several attributes of eggplant (Solanum melongena L.). JABS 7 (5): 357-362.
Craigie JS. 2011. Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23 (3): 371-393. DOI: 10.1007/s10811-010-9560-4.
Danesh RK, Bidarigh S, Azarpour E, Moraditochaee M, Bozorgi HR. 2012. Study effects of nitrogen fertilizer management and foliar spraying of marine plant Ascophyllum nodosum extract on yield of cucumber (Cucumis sativus L.). Intl J Agric Crop Sci 4 (20): 1492-1495.
Dhargalkar VK, Pereira N. 2005. Seaweed: Promising plant of the millennium. Sci Cult 71 (3-4): 60-66.
du Jardin P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196: 3-14. DOI: 10.1016/j.scienta.2015.09.021.
Durand N, Briand X, Meyer C. 2003. The effect of marine bioactive substances (N PRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol Plant 119 (4): 489-493. DOI: 10.1046/j.1399-3054.2003.00207.x.
Elansary HO, Yessoufou K, Shokralla S, Mahmoud EA, Skalicka-Wo?niak K. 2016. Enhancing mint and basil oil composition and antibacterial activity using seaweed extracts. Ind Crops Prod 92: 50-56. DOI: 10.1016/j.indcrop.2016.07.048.
Hamouda HA, Khalifa RKM, El-Dahshouri MF, Zahran NG. 2016. Yield, fruit quality and nutrients content of pomegranate leaves and fruit as influenced by iron, manganese and zinc foliar spray. Intl J Pharmtech Res 9 (3): 46-57.
Harbouze R, Pellissier J-P, Rolland J-P, Khechimi W. 2019. Rapport de synthèse sur l’agriculture au Maroc, CIHEAM-IAMM.
Hong DD, Hien HM, Son PN. 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19 (6): 817-826. DOI: 10.1007/s10811-007-9228-x.
Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B. 2009. Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28 (4): 386-399. DOI: 10.1007/s00344-009-9103-x.
Kindleysides S, Quek S-Y, Miller MR. 2012. Inhibition of fish oil oxidation and the radical scavenging activity of New Zealand seaweed extracts. Food Chem 133 (4): 1624-1631. DOI: 10.1016/j.foodchem.2012.02.068.
Kumar NA, Vanlalzarzova B, Sridhar S, Baluswami M. 2012. Effect of liquid seaweed fertilizer of Sargassum wightii Grev. on the growth and biochemical content of green gram (Vigna radiata (L.) R. Wilczek). Rec Res Sci Tech 4 (4): 40-45.
Lola-Luz T, Hennequart F, and Gaffney M. 2014. Effect on health-promoting phytochemicals following seaweed application, in potato and onion crops grown under a low input agricultural system. Sci Hortic 170: 224-227. DOI: 10.1016/j.scienta.2014.03.022.
Mills L. 2012. Reap Benefits of Cotainer Gardening. Las Vegas Review Journal. http://yamm.finance/wiki/Container_(flowers).html.
Page AL, Miller RH, Keeney DR, Baker D, Ellis R. 1982. Methods of Soil Analysis. American Society of Agronomy, Inc., Wisconsin, USA
Riadi H. 1998. Biodiversité des algues marines. Rapport étude nationale de biodiversité Projet GEF/6105, 96.
Roussos PA, Denaxa NK, Damvakaris T. 2009. Strawberry fruit quality attributes after application of plant growth stimulating compounds. Sci Hortic 119 (2): 138-146. DOI: 10.1016/j.scienta.2008.07.021.
Sabeena F, Jacobsen. 2013. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem 138 (2-3): 1670-1681. DOI: 10.1016/j.foodchem.2012.10.078.
Sarhan TZ, Ismael SF. 2014. Effect of low temperature and seaweed extracts on flowering and yield of two cucumber cultivars (Cucumis sativus L.). J Agric Food Res 3 (1): 41-54. DOI: 10.24102/ijafr.v3i1.277.
Sharma HSS, Fleming C, Selby C, Rao JR, Martin T. 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J Appl Phycol 26 (1): 465-490. DOI: 10.1007/s10811-013-0101-9.
Spann TM, Little HA. 2010. Effect of stimplex crop biostimulant on drought tolerance of 'hamlin'sweet orange. Proc Fla State Hortic Soc 123: 100-104.
Ting SV, Rouseff RL. 1986. Citrus Fruits and Their Products: Analysis, Technology (Food Science and Technology). Marcel Dekker Inc., New York, USA.
Whapham CA, Blunden G, Jenkins T, Hankins SD. 1993. Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J Appl Phycol 5: 231-234. DOI: 10.1007/BF00004023.
Xu C, Leskovar DI. 2015. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci Hortic 183: 39-47. DOI: 10.1016/j.scienta.2014.12.004.
Yassen AA, Abou El Nour EAA, Seeda MAA, Abdallah MMS, El-Sayed SAA. 2018. Effect of potassium fertilization levels and algae extract on growth, bulb yield and quality of onion (Allium cepa L.). Middle East J Agric Res 7 (2): 625-638.
Zermeno-Gonzalez A, Mendez-Lopez G, Rodriguez-Garcia R, Cadena-Zapata M, Cardenas-Palomo JO, Catalan-Valencia EA. 2015. Biofertilization of a vineyard and its relationship to photosynthesis, yield and fruit quality. Agrociencia 49 (8): 875-887.
Zodape ST, Mukhopadhyay S, Eswaran K, Reddy MP, Chikara J. 2010. Enhanced yield and nutritional quality in green gram (Phaseolus radiata L) treated with seaweed (Kappaphycus alvarezii) extract. JSIR 69: 468-471.