Soil arthropod pests associated with groundnut (Arachis hypogaea) in Golinga, Northern Ghana

##plugins.themes.bootstrap3.article.main##

ROSINA KYEREMATEN
IRAJATU ISSIFU
SAMUEL ADU-ACHEAMPONG

Abstract

Abstract. Kyerematen R, Issifu I, Adu-Acheampong S. 2024. Soil arthropod pests associated with groundnut (Arachis hypogaea) in Golinga, Northern Ghana. Asian J Agric 8: 64-69. Groundnut (Arachis hypogaea L.) production is one of the main livelihood activities in the northern part of Ghana consisting of the five main regions, Upper West, Upper East, Northern, Savannah and North East regions and the principal source of protein for mostly, the rural people. Notwithstanding that, not much research has been conducted on soil arthropod pests associated with the crop in the study area. To fill this gap, this research documented soil arthropod pest diversity of the crop and the damage they cause as baseline data for pest management decisions in the study area. Pitfall traps were set up on twenty-four (24) 5 m × 5 m plots close to harvest time after raising groundnut plants on them in a Randomized Complete Design. The traps were emptied on four occasions from each plot at two-week intervals. Results from the field trials revealed that beetles, termites, wireworms, false wireworms and millipedes were the dominant pest groups in the study area. The results further showed that these key pests caused nearly 90% damage to groundnut pods which goes a long way to impact negatively on the livelihood of farmers in the study area. The study recommended environmentally friendly pest control methods such as the use of botanical extracts and other biorational means in the study area. This was based on findings from our preliminary survey which revealed that the current pesticides that farmers use are largely ineffective in the study area.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Abagale FK, Oredola Tunde AK, Agyemang O. 2014. Organochlorine pesticide levels in irrigation water of the Golinga dam, Tolon District Ghana. Ellxir Pollut 72: 25610-25615.
Abhilash PC, Singh N. 2009. Pesticide use and application: An Indian scenario. J Hazard Mater 165: 1-12. DOI: 10.1016/j.jhazmat.2008.10.061.
Adjepong M, Jain R, Pickens CA, Appaw W, Fenton JI. 2018. Quantification of fatty acid and mineral levels of selected seeds, nuts, and oils in Northern Ghana. J Food Sci Technol 55: 4615-4622. DOI: 10.1007/s13197-018-3400-y.
Agoyi EE, N’danikou S, Kafoutchoni M, Ayena M, Sodedji FA, Agbahoungba S, Sossou HS, Vodouhe R, Assogbadjo AE. 2019. Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet] crop attracts more field pests and diseases than reported before. Agric Res Tech: Open Access J 21 (5): 556180. DOI: 10.19080/ARTOAJ.2019.21.556180.
Ajeigbe HA, Waliyar F, Echekwu CA, Ayuba K, Motagi BN, Eniayeju D, Inuwa A. 2014. A Farmer’s guide to groundnut production in Nigeria. Patancheru 502 (324): 36.
Amin PW, Mohammad AB. 1980. Groundnut pest research at ICRISAT. https://oar.icrisat.org/3604/
Angelucci F, Bazzucchi A. 2019. Analysis of incentives and disincentives for groundnuts in Ghana. Gates Open Res 3: 426.
Bekoe EMO, Amuah EEY, Abuntori ZN, Sintim E, Kichana E, Quarcoo G. 2021. Water quality impact from the multipurpose use of the golinga reservoir in northern Ghana. Water Air Soil Pollut 232: 1-15. DOI: 10.1007/s11270-021-05331-9.
Biswas GC. 2014. Insect pests of groundnut (Arachis hypogaea L.), nature of damage and succession with the crop stages. BARI 39: 273-282. DOI: 10.3329/bjar.v39i2.20429.
Boadi P, Gyimah FT, Aryeetey R. 2022. Descriptive analysis of changes in Ghana's food availability and food safety information between 2010 and 2020. AJFAND 22 (2): 19624-19657. DOI: 10.18697/ajfand.107.21815. DOI: 10.18697/ajfand.107.21815.
Culliney TW. 2013. Role of arthropods in maintaining soil fertility. Agriculture 3: 629-659. DOI: 10.3390/agriculture3040629.
Ebeling A, Hines J, Hertzog LR, Lange M, Meyer ST, Simons NK, Weisser WW. 2018. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic Appl Ecol 26: 50-63. DOI: 10.1016/j.baae.2017.09.014.
Feldman A, Ho WK, Massawe F, Mayes S. 2019. Bambara groundnut is a climate-resilient crop: How could a drought-tolerant and nutritious legume improve community resilience in the face of climate change? In: Sarkar A, Sensarma S, vanLoon G (eds). Sustainable Solutions for Food Security: Combating Climate Change by Adaptation. Springer. DOI: 10.1007/978-3-319-77878-5_8.
Gullan PJ, Cranston PS. 2014. The Insects: An Outline of Entomology. John Wiley & Sons, NY.
Harish G, Nataraja MV, Jasrotia P, Holajjer P, Savaliya SD, Gajera M. 2015. Impact of weather on the occurrence pattern of insect pests on groundnut. Legume Res 38: 524-535. DOI: 10.5958/0976-0571.2015.00108.3.
Infonet Biovision. 2017. Geographical Distribution of Groundnut in Africa. www.infonet-biovision.org. Accessed 31/03/24
Kadiyala MDM, Nedumaran S, Padmanabhan J, Gumma MK, Gummadi S, Srigiri SR, Robertson R, Whitbread A. 2021. Modeling the potential impacts of climate change and adaptation strategies on groundnut production in India. Sci Total Environ 776: 145996. DOI: 10.1016/j.scitotenv.2021.145996.
Khayatnezhad M, Nasehi F. 2021. Industrial pesticides and a methods assessment for the reduction of associated risks: A review. Adv Life Sci 8: 202-210.
Konate M, Sanou J, Miningou A, Okello DK, Desmae H, Janila P, Mumm RH. 2020. Past, present and future perspectives on groundnut breeding in Burkina Faso. Agronomy 10 (5): 704. DOI: 10.3390/agronomy10050704.
Krishna G, Singh BK, Kim EK, Morya VK, Ramteke PW. 2015. Progress in genetic engineering of peanut (Arachis hypogaea L.)-A review. Plant Biotechnol J 13: 147-162. DOI: 10.1111/pbi.12339.
Maheshala NV, Kurella A, Jena R, Gangaiah H. Thankappan R. 2023. IPM in Groundnut: Current Scenario and in Integrated Pest Management in Diverse Cropping Systems. Apple Academic Press, Florida. DOI: 10.1201/9781003304524-12.
Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, Zahrulakmal M, Hahiree MKIM, Kendabie P, Licea LC, Massawe F. 2019. Bambara groundnut: An exemplar underutilised legume for resilience under climate change. Planta 250: 803-820. DOI: 10.1007/s00425-019-03191-6.
Naawe EK, Angyiereyiri ED. 2020. Effect and infestation levels of groundnut pod borer (Elasmolomus sordidus) on groundnut (Arachis hypogaea) and farm control measures in Tedema, Builsa-North District of the Upper East Region, Ghana. Intl J Trop Insect Sci 40: 687-696. DOI: 10.1007/s42690-020-00121-y.
Nataraja MV, Jadon KS, Holajjer P, Thirumalaisamy PP, Jasrotia P, Dutta R. 2014. Integrated Pest and Disease Management in Groundnut. Directorate of Groundnut Research, P. B. No. 05, Junagadh-3 62 001, Gujarat, India, Technical Bulletin, No 02/2014, Page 19.
Okello DK, Monyo E, Deom CM, Ininda J, Oloka HK. 2013. Groundnut Production Guide for Uganda: Recommended Practices for Farmers. National Agricultural Research Organisation, Entebbe.
Onwona-Kwakye M, Mengistie B, Ofosu-Anim J, Nuer ATK, Van den Brink PJ. 2019. Pesticide registration, distribution and use practices in Ghana. Environ Dev Sustain 21: 2667-2691 DOI: 10.1007/s10668-018-0154-7.
Oteng-Frimpong R, Sriswathi M, Ntare BR, Dakor FD. 2015. Assessing the genetic diversity of 48 groundnut (Arachis hypogaea L.) genotypes in the Guinea savanna agro-ecology of Ghana, using microsatellite-based markers. Afr J Biotechnol 14: 2485-2485. DOI: 10.5897/AJB2015.14770.
Owusu-Adjei E, Baah-Mintah, Salifu B. 2017. Analysis of the groundnut value chain in Ghana. World J Agric 5: 177-188. DOI: 10.12691/wjar-5-3-8. DOI: 10.12691/wjar-5-3-8.
Özkara A, Aky?l D, Konuk M. 2016. Pesticides, Environmental Pollution, and Health. In: Larramendy ML, Soloneski S (eds). Environmental health risk-hazardous factors to living species. IntechOpen, London. DOI: 10.5772/63094.
Panse RK. 2021. Insect pests of groundnut and their integrated management. In: Mishra YK, Panday AK, Sharma AK (eds). Insect Pest Management Concept and Approaches. AkiNik Publications, New Delhi.
Patil SB, BC, Reddy BCB, Chitgupekar SC, Patil BB. 2015. Modern tillage and integrated nutrient management practices for improving soil fertility and productivity of groundnut (Arachis hypogaea L.) under rainfed farming system. Intl Lett Nat Sci 2015: 1-12. DOI: 10.56431/p-la2z91.
Pawar VB, Mutkule DS, Gambhire VS, Bobade SS, Magar SM. 2023. Screening of groundnut genotypes and abundance of groundnut pod. Pharm Innov J 12: 1552-1558.
Plianbangchang P, Jetiyanon K, Wittaya-Areekul S. 2009. Pesticide use patterns among small-scale farmers: A case study from Phitsanulok, Thailand. Southeast Asian J Trop Med Public Health 40 (2): 401-410.
Quitco RT, Quindoza NM. 1986. Assessment of Paddy Loss in Storage. Unpublished Terminal Report, Naphire.
Ramakrishna A, Tam HM, Wani SP, Long TD. 2006. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res 95: 115-125. DOI: 10.1016/j.fcr.2005.01.030.
Sayibu AG, Alhassan AL, Adongo TA. 2015. Effect of different water application schedules on the growth and yield of loose-leaf lettuce (Lactuca sativa var crispa) at Goilinga irrigation scheme in the Tolon District of the Northern Region, Ghana. Greener J Agric Sci 5: 159-166. DOI: 10.15580/GJAS.2015.5.020315028.
Sharifzadeh MS, Abdollahzadeh G, Damalas CA, Rezaei R. 2018. Farmers’ criteria for pesticide selection and use in the pest control process. Agriculture 8 (2): 24. DOI: 10.3390/agriculture8020024.
Simtowe F, Shiferaw B, Abate T, Kassie M, Monyo E, Madzonga O, Silim S, Muricho G. 2009. Assessment of the Current Situation and Future Outlooks for the Groundnut Sub-Sector in Malawi. International Crops Research Institute for the Semi Arid Tropics, Nairobi.
Singh KA, Nigam SN. 2016. Arachis gene pools and genetic improvement in groundnut. In: Rajpal VR, Rao SR, Raina SN (eds). Gene Pool Diversity and Crop Improvement. Springer International Publishing, Switzerland. DOI: 10.1007/s42690-020-00121-y.
Srinivasan R, Abney MR, Lai PC, Culbreath AK, Tallury S, Leal-Bertioli SC. 2018. Resistance to thrips in peanut and implications for management of thrips and thrips-transmitted orthotospoviruses in peanut. Front Plant Sci 9: 1604. DOI: 10.3389/fpls.2018.01604.
Tang FH, Lenzen M, McBratney A, Maggi F. 2021. Risk of pesticide pollution at the global scale. Nature Geosci 14: 206-210. DOI: 10.1038/s41561-021-00712-5.
Tanzubil PB, Yahaya BS. 2017. Assessment of yield losses in groundnut (Arachis hypogaea L.) due to arthropod pests and diseases in the Sudan savanna of Ghana. J Entomol Zool Stud 5: 1561-1564.
Tanzubil PB. 2016. Incidence of arthropod pests and diseases of groundnut (Arachis hypogaea L.) in northern Ghana. J Entomol Zool Stud 4 (04): 29-32.
Tooker JF, Frank SD. 2012. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J Appl Ecol 49: 974-985. DOI: 10.1111/j.1365-2664.2012.02173.x.
Umeh VC, Waliyar F, Traore SC, Omar BDJ. 2001. Farmers opinions and influence of cultural practices on soil pest damage to peanuts in West Africa. Insect Sci Appl 21: 257-265. DOI: 10.1017/S1742758400007669.
United States Department of Agriculture (USDA) (Foreign Agriculture Services). 2023. Ghana Oilseeds Voluntary 2023. A Report by Gain Global Agricultural Network.
War AR, Paulraj MG, Ignacimuthu S, Sharma HC. 2013. Defensive responses in groundnuts against chewing and sap-sucking insects. J. Plant Growth Regul 32: 259-272. DOI: 10.1007/s00344-012-9294-4.
Wightman JA, Amin PW. 1988. Groundnut pests and their control in the semi-arid tropics. Trop Pest Manag 34: 218-226. DOI: 10.1080/09670878809371245.