The effects of the density of the mud snail Cipangopaludina chinensis (Martens) (Architaenioglossa: Viviparidae) on the development of rice plant

##plugins.themes.bootstrap3.article.main##

NKOUM METOU’OU ERNEST
DWI HARYA YUDISTIRA
MBONGAYA SAMY EWARE
SATORU SATO

Abstract

Abstract. Ernest NM, Yudistira DH, Eware MS, Sato S. 2024. The effects of the density of the mud snail Cipangopaludina chinensis (Martens) (Architaenioglossa: Viviparidae) on the development of rice plant. Asian J Agric 8: 79-87. This study investigated the influence of different mud snails, Cipangopaludina chinensis (Martens) (Architaenioglossa: Viviparidae), and densities on rice plant growth in various environments. The numbers of snails per plant were 0, 2, 5, 7 and 0, 1, 4, 8, respectively. The best density was selected from the first experiment and used in a second investigation outside, which lasted until harvest. In the laboratory, 0 and 5 snails positively impacted the height, while 1, 4, and 8 snails boosted the growth and chlorophyll content. In the greenhouse, 2, 5, and 7 improved the height of rice plants; 0, 5, and 7 snails impacted the number of leaves, then 5 and 7 raised the chlorophyll content. Outside, 2, 5, and 7 snails increased plant height, whereas five snails improved the number of leaves, and 5 and 7 snails enhanced the number of tillers. Subsequently, a density of five snails with four rice seedlings per hill was applied based on the highest average performance criteria recorded across all three test conditions. In 2022, the snail treatment significantly impacted chlorophyll content, plant height, and slight weeding activity. Additionally, during 2023, snails increased the number of tillers, panicles, yields, and the abundance of duckweed and algae. The soil's carbon-nitrogen ratio levels had no significant difference between the two years. As for the survival of animals, notable variations were observed. The findings of this study suggested that fluctuations in the mud snail population benefited rice plant development, as did the occurrence of duckweed and algae, which depend on the surrounding conditions.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Albou E, Abdellaoui M, Abdaoui A, Ait Boughrous A. 2024. Agricultural practices and their impact on aquatic ecosystems – A mini-review. Ecol Eng Environ Technol 25 (1): 321-331. DOI: 10.12912/27197050/175652.
Amundson R, Berhe A, Hopmans J, Olson C, Sztein A, Sparks D. 2015. Soil and human security in the 21st century. Science 348 (6235): 1261071. DOI: 10.1126/science.1261071.
Benites J, Ashburner J. 2003. FAO's role in promoting conservation agriculture. In: García-Torres L, Benites J, Martínez-Vilela A, Holgado-Cabrera A (eds). Conservation Agriculture. Springer, Dordrecht. DOI: 10.1007/978-94-017-1143-2_17.
Burnett J, Pope K, Wong A, Allen C, Haak D, Stephen B, Uden D. 2018. Thermal tolerance limits of the Chinese mystery snail (Bellamya chinensis): Implications for management. Am Malacol Bull 36 (1): 140-144. DOI: 10.4003/006.036.0106.
Byrareddy V, Kouadio L, Mushtaq S, Stone R. 2019. Sustainable production of robusta coffee under a changing climate: A 10-year monitoring of fertilizer management in coffee farms in Vietnam and Indonesia. Agronomy 9 (9): 499. DOI: 10.3390/agronomy9090499.
Choi SH, Choi G, Nam HK. 2022 Impact of rice paddy agriculture on habitat usage of migratory shorebirds at the rice paddy scale in Korea. Sci Rep 12 (1): 5762. DOI: 10.1038/s41598-022-09708-6.
Collas FP, Breedveld S, Matthews J, Velde GV, Leuven R. 2017. Invasion biology and risk assessment of the recently introduced Chinese mystery snail, Bellamya (Cipangopaludina) chinensis (Gray, 1834), in the Rhine and Meuse River basins in Western Europe. Aquat Invasions 12: 275-286. DOI: 10.3391/AI.2017.12.3.02.
Dermiyati, Niswati A. 2014. Improving biodiversity in rice paddy fields to promote land sustainability. In: Kaneko N, Yoshiura S, Kobayashi M (eds). Sustainable Living with Environmental Risks. Springer, Tokyo. DOI: 10.1007/978-4-431-54804-1_5.
Dewi VK, Sato S, Yasuda H. 2017. Effects of a mud snail Cipangopaludina chinensis laeta (Architaenioglossa: Viviparidae) on the abundance of terrestrial arthropods through rice plant development in a paddy field. Appl Entomol Zool 52 (1): 97-106. DOI: 10.1007/s13355-016-0458-8.
Dinh QM, Nha Nguyen Y, Hoa Dang T, Sy Tran N, Thi Huyen Lam T. 2020. The impact of human activities on the biodiversity of fish species composition in rice paddy field in An Giang Province, Southern Vietnam. Egypt J Aquat Biol Fish 24 (2): 107-120. DOI: 10.21608/ejabf.2020.78889.
Drechsel P, Heffer P, Magen H, Mikkelsen R, Wichelns D. 2015. Managing Water and Fertilizer for Sustainable Agricultural Intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI), Paris, France.
Dubey AN, Verma S, Goswami SP, Devedee AK. 2019. Effect of temperature on different growth stages and physiological process of rice crop- As a review. Bull Environ Pharmacol Life Sci 7 (11): 129-136.
Edgar M, Hanington P, Lu R, Proctor H, Zurawell R, Kimmel N, Poesch M. 2022. The first documented occurrence and life history characteristics of the Chinese mystery snail, Cipangopaludina chinensis (Gray, 1834) (Mollusca: Viviparidae), in Alberta, Canada. BioInvasions Rec 11 (2): 449-460. DOI: 10.3391/bir.2022.11.2.18.
Hou Y, Li B, Luo J, Zhang C, He J, Zhu J. 2021. Effect of Bellamya purificata on organic matter degradation in surface sediment as revealed by amino acids. Aquac Environ Interact 13: 1-12. DOI: 10.3354/aei00382.
Hu Z, Gu C, Maucieri C, Shi F, Zhao Y, Feng C, Cao Y, Zhang Y. 2022. Crayfish–Fish aquaculture ponds exert reduced climatic impacts and higher economic benefits than traditional wheat–rice paddy cultivation. Agriculture 12 (4): 515. DOI: 10.3390/agriculture12040515.
Hussain S, Khaliq A, Ali B, Hussain H, Qadir T, Hussain S. 2019. Temperature extremes: Impact on rice growth and development. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF (eds). Plant Abiotic Stress Tolerance. Springer, Cham. DOI: 10.1007/978-3-030-06118-0_6.
Iwai N, Koyama N, Tsuji S, Maruyama A. 2018. Functions of indigenous animals in paddy fields: an in situ experiment on their effects on water quality, phytoplankton, weeds, soil structure, and rice growth. Paddy Water Environ 16 (1): 89-98. DOI: 10.1007/s10333-017-0618-7.
Japan Meteorological Agency. 2022. Chiyoda-ku, Tokyo 100-8122, Japan. http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_a1.php?prec_no=35&bloc k_no=0263&year=2022.
Japan Meteorological Agency. 2023. Chiyoda-ku, Tokyo 100-8122, Japan. http://www.data.jma.go.jp/obd/stats/etrn/view/monthly_a1.php?prec_no=35&bloc k_no=0263&year=2023.
Karatayev AY, Burlakova LE, Karatayev VA, Padilla DK. 2009. Introduction, distribution, spread, and impacts of exotic freshwater gastropods in Texas. Hydrobiologia 619 (1): 181-194. DOI: 10.1007/s10750-008-9639-y.
Kingsbury S, McAlpine D, Cheng Y, Parker E, Campbell, L. 2021. A review of the non-indigenous Chinese mystery snail, Cipangopaludina chinensis (Viviparidae), in North America, with emphasis on occurrence in Canada and the potential impact on indigenous aquatic species. Environ Rev 29 (2): 182-200. DOI: 10.1139/er-2020-0064.
Ko C, Asano S, Lin M, Ikeya T, Peralta E, Triño E, Uehara Y, Ishida T, Iwata T, Tayasu I, Okuda N. 2021. Rice paddy irrigation seasonally impacts stream benthic macroinvertebrate diversity at the catchment level. Ecosphere 12 (5): e03468. DOI: 10.1002/ecs2.3468.
Kong X, Lal R, Li B, Liu H, Li K, Feng G, Zhang Q, Zhang B. 2014. Fertilizer Intensification and Its Impacts in China's HHH Plains. Adv Agron 125: 135-169. DOI: 10.1016/b978-0-12-800137-0.00004-2.
Kurniawan A, Sato S, Yasuda H. 2018. Effects of ambient temperature and the mud snail Cipangopaludina chinensis laeta (Architaenioglossa: Viviparidae) on performance of rice plants. Appl Entomol Zool 53 (1): 137-141. DOI: 10.1007/s13355-017-0539-3.
Luo Y, Fu H, Traore S. 2014. Biodiversity conservation in rice paddies in China: Toward ecological sustainability. Sustainability 6 (9): 6107-6124. DOI: 10.3390/su6096107.
Nakanishi K, Takakura KI, Kanai R, Tawa K, Murakami D, Sawada H. 2014. Impacts of environmental factors in rice paddy fields on abundance of the mud snail (Cipangopaludina chinensis laeta). J Mollusc Stud 80 (4): 460-463. DOI: 10.1093/mollus/eyu054.
Olden JD, Ray L, Mims MC, Horner-Devine MC. 2013. Filtration rates of the non-native Chinese mystery snail (Bellamya chinensis) and potential impacts on microbial. Limnetica 32: 107-120. DOI: 10.23818/limn.32.11.
Pasuquin E, Hasegawa T, Eberbach P, Reinke R, Wade L, Lafarge T. 2013. Responses of eighteen rice (Oryza sativa L.) cultivars to temperature tested using two types of growth chambers. Plant Prod Sci 16 (3): 217-225. DOI: 10.1626/pps.16.217.
Propper CR, Sedlock JL, Smedley RE, Frith O, Shuman-Goodier ME, Grajal-Puche A, Stuart AM, Singleton GR. 2024. Balancing food security, vertebrate biodiversity, and healthy rice agroecosystems in Southeast Asia. Crop Environ 3 (1): 43-50. DOI: 10.1016/j.crope.2023.11.005.
Rahim A, Rahmawandi Y, Nurmaisah Adiwena, Haka PD, Setiawan A. 2022. Natural Enemies of Pest in Rice Cultivation of Sesayap Watershed Area, Tana Tidung Regency. IOP Conf Ser: Earth Environ Sci 1083 (1): 012021. DOI: 10.1088/1755-1315/1083/1/012021.
Sato K. 1972. Growth responses of rice plant to environmental conditions: I. The effects of air-temperatures on the growth at vegetative stage. Jpn J Crop Sci 41 (4): 388-393. DOI: 10.1626/jcs.41.388.
Seppälä O, Jokela J. 2011. Immune defence under extreme ambient temperature. Biol Lett 7: 119-122. DOI: 10.1098/rsbl.2010.0459.
Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347 (6223): 1259855. DOI: 10.1126/science.1259855.
Wang H, Hijmans RJ. 2019. Climate change and geographic shifts in rice production in China. Environ Res Commun 1 (1): 011008. DOI: 10.1088/2515-7620/ab0856.
Wibowo H, Kasno, A. 2021. Soil organic carbon and total nitrogen dynamics in paddy soils on the Java Island, Indonesia. IOP Conf Ser: Earth Environ Sci 648 (1): 012192. DOI: 10.1088/1755-1315/648/1/012192.
Yang Y, Zhang J, Liu L, Wang G, Chen M, Zhang Y, Tang X. 2020. Experimental study on phosphorus release from sediment with fresh-water snail (Bellamya aeruginosa) bioturbation in eutrophic lakes. J Soils Sediments 20 (5): 2526-2536. DOI: 10.1007/s11368-020-02614-2.
Yanygina L. 2021. Mass mortality of invasive snails: Impact of nutrient release on littoral water quality. Diversity 13 (8): 362. DOI: 10.3390/d13080362.
Yoshida S. 1973. Effects of temperature on growth of the rice plant (Oryza sativa L.) in a controlled environment. Soil Sci Plant Nutr 19 (4): 299-310. DOI: 10.1080/00380768.1973.10432599.
Zhang L, Yan C, Guo Q, Zhang J, Ruiz-Menjivar J. 2018. The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. Intl J Low-Carbon Technol 13 (4); 338-352. DOI: 10.1093/ijlct/cty039.
Zhang Y, Guan M, Chen C, Wang R, Huang H, Guan C. 2022a. A Symbiotic system of irrigated rice–earthworm improves soil properties and rice growth in Southern China. Sustainability 14 (11): 6448. DOI: 10.3390/su14116448.
Zhang Y, Hou, Y, Jia R, Li B, Zhu J, Ge X. 2022b. Nitrogen occurrence forms and bacterial community in sediment influenced by Bellamya purificata bioturbation. Front Mar Sci 9: 1028716. DOI: 10.3389/fmars.2022.1028716.
Zhou G, Xu S, Ciais P, Manzoni S et al. 2019. Climate and litter C/N ratio constrain soil organic carbon accumulation. Natl Sci Rev 6 (4): 746-757. DOI: 10.1093/nsr/nwz045.
Zhou M, Hou Y, Jia R, Li B, Zhu J. 2023. Effects of Bellamya purificata cultivation at different stocking densities on the dynamics and assembly of bacterial communities in sediment. Biomolecules 13 (2): 254. DOI: 10.3390/biom13020254.
Zhou Z, Jin J, Song L, Yan L. 2021. Effects of temperature frequency trends on projected japonica rice (Oryza sativa L.) yield and dry matter distribution with elevated carbon dioxide. PeerJ 9: e11027. DOI: 10.7717/peerj.11027.