The effectiveness of acid-tolerant antagonists in the control of oil palm basal stem rot disease caused by Ganoderma sp. in peat soils

##plugins.themes.bootstrap3.article.main##

SUPRIYANTO
PURWANTO
SUSILO H. POROMARTO
SUPYANI

Abstract

Abstract. Supriyanto, Purwanto, Poromarto SH, Supyani. 2024. The effectiveness of acid-tolerant antagonists in the control of oil palm basal stem rot disease caused by Ganoderma sp. in peat soils. Asian J Agric 8: 143-152. Oil palm is one of the main contributors to global vegetable oil production. Some of the oil palm plantation areas are on peatlands. A serious problem of oil palm plantations in peatlands is the high incidence of Basal Stem Rot (BSR) disease caused by Ganoderma sp. Effective methods to control the oil palm BSR disease in peatlands have not been found. Biological control is an alternative control method that is currently the focus of development, however, the characteristics of tropical peatlands with ultra-low pH levels are an obstacle to its development. This research aimed to find the effective use of indigenous acid-tolerant antagonists and the effect of peat pH in the biological control of BSR disease in oil palm seedlings in peat soils. Research has been carried out in an experimental garden involving three fungi and two bacterial acid-tolerant antagonists from peatlands. The results showed that the effectiveness of acid-tolerant antagonists was 56.25% in reducing the symptoms of the disease. The difference in peat pH did not affect the effectiveness of control in hemic peat soil, however, it affected the effectiveness of disease control in sapric peat soil. This study indicates that acid-tolerant antagonists from West Kalimantan peatlands can potentially be used as biological control agents of Ganoderma in oil palms on peatlands.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Andriesse JP. 1988. Nature and Management of Tropical Peat Soils. Food And Agriculture Organization Of The United Nations (FAO), Roma. http://www.fao.org/3/x5872e/x5872e06.htm#4.3.3%20Acidity.
Arabia T, Basri H, Manfarizah, Zainabun, Mukhtaruddin. 2020. Physical and chemical characteristics in peat lands of Aceh Jaya District, Indonesia. IOP Conf Ser: Earth Environ Sci 499: 012004. DOI: 10.1088/1755-1315/499/1/012004.
Arwiyanto T, Goto M, Tsuyumu S, Takikawa Y. 1994. Biological control of tomato bacterial wilt with the use of avirulent strain of Pseudomonas solanacearum Isolated from Sterilitzia reginae. Ann Phytopathol Soc Japan 60: 421-430. DOI: 10.3186/jjphytopath.60.421.
Barcelos E, Rios SA, Cunha RNA, Lopes R, Motoike SY, Babiychuk E, Skirycz A, Kushnir S. 2015. Oil palm natural diversity and the potential for yield improvement. Front Plant Sci 6: 190. DOI: 10.3389/fpls.2015.00190.
Barrow NJ, Hartemink AE. 2023. The effects of pH on nutrient availability depend on both soils and plants. Plant Soil 487: 21-37. DOI: 10.1007/s11104-023-05960-5.
Chibane LB, Forquet V, Lantéri P, Clément Y, Akkari LL, Oulahal N, Degraeve P, Bordes C. 2019. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front Microbiol 10: 829. DOI: 10.3389/fmicb.2019.00829.
Chong KP, Dayou J, Alexander A. 2017. Detection and Control of Ganoderma boninense in Oil Palm Crop. Springer, Cham. DOI: 10.1007/978-3-319-54969-9.
Cory AB, Chanton JP, Spencer RGM, Ogles OC, Rich VI, McCalley CK, Wilson RM. 2022. Quantifying the inhibitory impact of soluble phenolics on anaerobic carbon mineralization in a thawing permafrost peatland. PLoS ONE 17 (2): e0252743. DOI: 10.1371/journal.pone.0252743.
Darlis D, Jalloh MB, Chin CFS, Basri NKM, Besar NA, Ahmad K, Rakib MRM. 2023. Exploring the potential of Bornean polypore fungi as biological control agents against pathogenic Ganoderma boninense causing basal stem rot in oil palm. Sci Rep 13: 10316. DOI: 10.1038/s41598-023-37507-0.
Ferrarezi RS, Lin XJ, Neira ACG, Zambon FT, Hu H, Wang X, Huang JH, Fan GC. 2022. Substrate pH Influences the nutrient absorption and Rhizosphere microbiome of Huanglongbing-affected grapefruit plants. Front Plant Sci 13: 856937. DOI: 10.3389%2Ffpls.2022.856937.
Fu YH, Quan WQ, Li CC, Qian CY, Tang FH, Chen XJ. 2019. Allelopathic effects of phenolic acids on seedling growth and photosynthesis in Rhododendron delavayi Franch. Photosynthetica 57 (2): 377-387. DOI: 10.32615/ps.2019.045.
Goh YK, Ng FW, Kok SM, Goh YK, Goh KJ. 2014. Aggressiveness of Ganoderma boninense isolates on the vegetative growth of oil palm (Elaeis guineensis) seedlings at different ages. Malays Appl Biol 43 (2): 9-16.
Ibrahim MS, IA Seman, MH Rusli, MA Izzuddin, N Kamarudin, K Hashim, ZA Manaf. 2020. Surveillance of Ganoderma disease in oil palm planted by participants of the smallholders replanting incentive scheme in Malaysia. J Oil Palm Res 32 (2): 237-244. DOI: 10.21894/jopr.2020.0024.
Ilias GNM. 2000. Trichoderma and Its Efficacy as a Biocontrol Agents of Basal Stem Rot of Oil Palm (Elaeis guinensis Jaqc.). [PhD Thesis]. University Putra Malaysia, Selangor, Malaysia.
Kang H, Kwon MJ, Kim S, Lee S, Jones TG, Johncock AC, Haraguchi A, Freeman C. 2018. Biologically driven DOC release from peatlands during recovery from acidification. Nat Commun 9: 3807. DOI: 10.1038/s41467-018-06259-1.
Kusai NA, Ayob Z, Maidin MST, Safari S, Ali SRA. 2018. Characterization of fungi from diferent ecosystems of tropical peat in Sarawak, Malaysia. Rend Fis Acc Lincei 29: 469-482. DOI: 10.1007/s12210-018-0685-8.
Ladhari A, Gaaliche B, Zarrelli A, Ghannem M, Mimoun MB. 2020. Allelopathic potential and phenolic allelochemicals discrepancies in Ficus carica L. cultivars. S Afr J Bot 130: 30-44. DOI: 10.1016/j.sajb.2019.11.026.
Leontopoulos SV, Giavasis I, Petrotos K, Kokkora M, Makridis CH. 2015. Effect of different formulations of polyphenolic compounds obtained from OMWW on the growth of several fungal plant and food borne pathogens. Studies in vitro and in vivo. Agric Agric Sci Procedia 4: 327-337. DOI: 10.1016/j.aaspro.2015.03.037.
Lu HL, Nkoh JN, Baquy MA, Dong G, Li JY. 2020. Plants alter surface charge and functional groups of their roots to adapt to acidic soil conditions. Environ Pollut 267: 115590. DOI: 10.1016/j.envpol.2020.115590.
Miettinen J, Shi C, Liew SC. 2016. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra, and Borneo in 2015 with changes since 1990. Glob Ecol Conserv 6: 67-78. DOI: 10.1016/j.gecco.2016.02.004.
Min K, Freeman C, Kang H, Choi SU. 2015. The regulation by phenolic compounds of soil organic matter dynamics under a changing environment. Biomed Res Intl 2015: 825098. DOI: 10.1155/2015/825098.
Misra D, Dutta W, Jha G, Ray P. 2023. Interactions and regulatory functions of phenolics in soil-plant-climate nexus. Agronomy 13 (2): 280. DOI: 10.3390/agronomy13020280.
Muniroh MS, Nusaibah SA, Vadamalai G, Siddique Y. 2019. Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings. Curr Plant Biol 20: 100116. DOI: 10.1016/j.cpb.2019.100116.
Murdoch CC, Skaar EP. 2022. Nutritional immunity: The battle for nutrient metals at the host–pathogen interface. Nat Rev Microbiol 20: 657-670. DOI: 10.1038/s41579-022-00745-6.
Nawawi A, Ho YY. 1990. Effect of temperature and ph on growth pattern of Ganoderma boninense from oil palm in Peninsular Malaysia. Pertanika 13 (3): 303-307.
Olaniyi ON, Szulczyk KR. 2021. Estimating the economic damage and treatment cost of basal stem rot striking the Malaysian oil palms. For Policy Econ 116: 10216. DOI: 10.1016/j.forpol.2020.102163.
Parthiban KR., Karuzaman V, Kamaruzaman J, Hamdan AB. 2016. GIS Mapping of Basal Stem Rot Disease in Relation to Soil Series Among Oil Palm Smallholders. Am J Agric Biol Sci 11 (1): 2-12. DOI: 10.3844/ajabssp.2016.2.12.
Paterson RRM. 2007. Ganoderma disease of oil palm—A white rot perspective necessary for integrated control. Crop Prot 26: 1369-1376. DOI: 10.1016/j.cropro.2006.11.009.
Peng SHT, Yap CK, Arshad R, Chai EW, Priwiratama H, Hidayat F, Yanti F, Yulizar F, PaneMM, Suprayetno H. 2022. Efficacy of Hendersonia on the growth of seedlings of oil palm (Elaeis guineensis Jacq.) and Ganoderma disease control: A field-based study using GanoEF biofertilizer at Medan, Indonesia. MOJ Ecol Environ Sci 7 (2): 24-29. DOI: 10.15406/mojes.2022.07.00243.
Prihantoro I, Permana AT, Suwarto, Aditia EL, Waruwu Y. 2023. Efektivitas pengapuran dalam meningkatkan pertumbuhan dan produksi tanaman sorgum (Sorghum bicolor (L.) Moench) sebagai hijauan pakan ternak. Jurnal Ilmu Pertanian Indonesia 28 (2): 297-304. DOI: 10.18343/jipi.28.2.297. [Indonesian]
Priwiratama, H, Prasetyo AE, Susanto A. 2014. Pengendalian penyakit busuk pangkal batang kelapa sawit secara kultur teknis. Jurnal Fitopatologi Indonesia 10 (1): 1-7. DOI: 10.14692/jfi.10.1.1. [Indonesian]
Rakib MRM, Bong CFJ, Khairulmazmi A, Idris AS. 2015. Aggressiveness of Ganoderma boninense and G. zonatum isolated from upper- and basal stem rot of oil palm (Elaeis Guineensis) in Malaysia. J Oil Palm Res 27 (3): 229-240.
Rakib RM, Bong CJ, Khairulmazmi A, Idris AS, Jalloh MB, Ahmed OH. 2017. Association of copper and zinc levels in oil palm (Elaeis guineensis) to the spatial distribution of Ganoderma species in the plantations on peat. J Phytopathol 165: 276-282. DOI: 10.1111/jph.12559.
Rees J, Flood Y, Hasan, Cooper RM. 2007. Effects of inoculum potential, shading and soil temperature on root infection of oil palm seedlings by the basal stem rot pathogen Ganoderma boninense. Plant Pathol 56: 862-870. DOI: 10.1111/j.1365-3059.2007.01621.x.
Rees R, Flood J, Hasan Y, Wills MA, Cooper RM. 2012. Ganoderma boninense basidiospores in oil palm plantations: evaluation of their possible role in stem rots of Elaeis guineensis. Plant Pathol 61: 567-578. DOI: 10.1111/j.1365-3059.2011.02533.x.
Rees RW, Flood J, Hasan Y, Potterd U, Cooper RM. 2009. Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant. Pathol 58: 982-989. DOI: 10.1111/j.1365-3059.2009.02100.x.
Ritchie H. 2021. “Palm Oil” Published online at OurWorldInData.org. https://ourworldindata.org/palm-oil
Siddiqui Y, A Surendran, Paterson RRM, Ali A, Ahmad K. 2021. Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi J Biol Sci 28 (5): 2840-2849. DOI: 10.1016/j.sjbs.2021.02.016.
Sipayung T. 2024. Kerugian Ekonomi Serangan Ganoderma Sawit dan Ancaman Masa Depan Industri Sawit Nasional. https://palmoilina.asia/jurnal-kelapa-sawit/serangan-ganoderma-sawit-rugi/. [Indonesian]
Siqueira JO, Nair MG, Hammerschmidt R, Safir GR. 1991. Significance of phenolic compounds in plant-soil-microbial systems. Crit Rev Plant Sci 10 (l): 63-121. DOI: 10.1080/07352689109382307.
Supriyanto, Purwanto, Poromarto SH, Supyani. 2020a. The relationship of some characteristics of peat with oil palm Basal Stem Rot (BSR) caused by Ganoderma in peatlands. IOP Conf Ser: Earth Environ Sci 423: 012064. DOI: 10.1088/1755-1315/423/1/012064.
Supriyanto, Purwanto, Poromarto SH, Supyani. 2020b. Evaluation of in vitro antagonistic activity of fungi from peatlands against Ganoderma species under acidic condition. Biodiverstas 21 (7): 2935-2945. DOI: 10.13057/biodiv/d210709.
Supriyanto, Purwanto, Poromarto SH, Supyani. 2021. Evaluation of in vitro activity of Ganoderma-antagonistic bacteria from peatland under acidic condition. IOP Conf Ser: Earth Environ Sci 724: 012013. DOI: 10.1088/1755-1315/724/1/012013.
Supriyanto, Purwanto, Poromarto SH, Supyani. 2023. The effectiveness of acid-tolerant antagonists in the control of oil palms root necrotic caused by Ganoderma sp. in peat soils. E3S Web Conf 467: 01023. DOI: 10.1051/e3sconf/202346701023.
Susanto A, Prasetyo AE, Wening S. 2013. Laju infeksi Ganoderma pada empat kelas tekstur tanah. Jurnal Fitopatologi Indonesia 9: 39-46. DOI: 10.14692/jfi.9.2.39. [Indonesian]
USDA. 2024. Oilseeds: World Markets and Trade. Oilseeds Stocks Forecast to Reach Record Highs in 2024/25. https://fas.usda.gov/data/production/commodity/4243000
Wawan, Amri AI, Akbar AI. 2019. Sifat fisika tanah dan produktivitas kelapa sawit (Elaeis guineensis Jacq.) di lahan gambut pada kedalaman muka air tanah yang berbeda. Jurnal Agroteknologi 10 (1): 15-22. DOI: 10.24014/ja.v10i1.5767. [Indonesian]
Widiarso B, Minardi S, Komariah, TO Chandra. 2020. Water level arrangement in the drainage channel on peat chemical characteristics, growth and corn yield. IOP Conf Ser: Earth Environ Sci 542: 012026. DOI: 10.1088/1755-1315/542/1/012026.
Wijayanti F, Aditya HF, Jaya A, Ramadhani WS, Tarigan RA. 2023. Effect of land use differences on pH and available phospor in peatland, Kelampangan, Central Kalimantan. Seminar Nasional Agroteknologi 2022: 24-27. DOI: 10.11594/ nstp.2023.3106. [Indonesian]
Yondra, Wawan N. 2017. Kajian sifat kimia lahan gambut pada berbagai land use. Agric 9 (2): 103-112. DOI: 10.24246/agric.2017.v29.i2.p103-112. [Indonesian]
Yule CM, Lim YY, Lim TY. 2018. Recycling of phenolic compounds in Borneo’s tropical peat swamp forests. Carbon Balance Manag 13: 3. DOI: 10.1186/s13021-018-0092-6.