Reduction of mycotoxin citrinin in Monascal Broken Rice (MBR) via exogenous tannic acid supplementation and chemometric analysis

##plugins.themes.bootstrap3.article.main##

PUTKRONG PHANUMONG
NUTTHAYA SRISUVOR
CHONTHIRA SARAWONG
KRITTIKA NORAJIT
JUTARAT WATTANAKUL
USARAT KUMTABTIM
PAULWATT NUCLEAR
KITISART KRABOUN

Abstract

Abstract. Phanumong P, Srisuvor N, Sarawong C, Norajit K, Wattanakul J, Kumtabtim U, Nuclear P, Kraboun K. 2024. Reduction of mycotoxin citrinin in Monascal Broken Rice (MBR) via exogenous tannic acid supplementation and chemometric analysis. Asian J Agric 8: 153-160. Addressing the presence of mycotoxin citrinin in Monascal Broken Rice (MBR) is crucial. Incorporating Exogenous Tannic Acid (ETA) into Monascus substrate effectively diminished citrinin accumulation in angkak. This research explored the impact of 10-20 mg/mL ETA supplementation on reducing citrinin levels in MBR and altering its pigments, glucosamine, monacolin K, fatty acids, and antioxidant properties. The relationship among these factors in MBR was examined using Principal Component Analysis (PCA). ETA supplementation markedly decreased citrinin levels in MBR by over 73.26% compared to the control group while enhancing pigments, glucosamine, monacolin K, fatty acid content, as well as catalase (CAT), superoxide dismutase (SOD), superoxide anion (?O-2), and hydroxyl free radical (HO•) scavenging capabilities. The M. purpureus generated higher contents of unsaturated fatty acids in ETA treatments, such as linoleic acid (C18:2) at 30-32%, followed by oleic acid (C18:1) ranging from 23 to 24%, compared to the control (no ETA), 25.09% for C18:2 and 20.23% for C18:1. The association among oleic acid, linoleic acid, linolenic acid, and citrinin content was evident through PCA loading plots and Pearson's correlation coefficient. ETA supplementation is a viable approach to reduce citrinin concentration in MBR. Applying multivariate analysis, PCA, and Pearson's correlation coefficient provided a comprehensive understanding of the interrelation among various factors in MBR after ETA treatment.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Arikan EB, Canli O, Caro Y, Dizge N. 2020. Production of bio-based pigments from food processing industry by-products (apple, pomegranate, black carrot, red beet pulps) using Aspergillus carbonarius. J Fungi 6: 240. DOI: 10.3390/jof6040240.
Chen T, Wang H, Su W, Mu Y, Tian Y. 2023. Analysis of the formation mechanism of volatile and non-volatile flavor substances in corn wine fermentation based on high-throughput sequencing and metabolomics. Intl Food Res 165: 112350. DOI: 10.1016/j.foodres.2022.112350.
Davani L, Terenzi C, De Simone A, Tumiatti V, Andrisano V, Montanari S. 2024. Design of experiments and optimization of monacolin K green extraction from red yeast rice by ultra-high-performance liquid chromatography. Foods 13: 2509. DOI: 10.3390/foods13162509.
Diaz M, del Rio B, Sanchez-Llana E, Ladero V, Redruello B, Fernandez M, Martin MC, Alvarez MA. 2016. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel. Food Microbiol 59: 85-91. DOI: 10.1016/j.fm.2016.05.012.
Guo J, He Z, Wu S, Zeng M, Chen J. 2019. Binding of aroma compounds with soy protein isolate in aqueous model: Effect of preheat treatment of soy protein isolate. Food Chem 290: 16-23. DOI: 10.1016/j.foodchem.2019.03.126.
Hajjaj H, Klaebe A, Goma G, Blanc PJ, Barbier E, Francois J. 2000. Mediumchain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol 66. DOI: 120-1125. 10.1128/aem.66.3.1120-1125.2000.
Hu Y, Zhou Y, Mao Z, Li H, Chen F, Shao Y. 2017. NAD+-dependent HDAC inhibitor stimulates Monascus pigment production but inhibit citrinin. AMB Express 7: 166. DOI: 10.1186/s13568-017-0467-1.
Huang T, Wang M, Shi K, Chen G, Tian X, Wu Z. 2017. Metabolism and secretion of yellow pigment under high glucose stress with Monascus ruber. AMB Express 7: 79. DOI: 10.1186/s13568-017-0382-5.
Kongbangkerd T, Tochampa W, Chatdamrong W, Kraboun K. 2014. Enhancement of antioxidant activity of monascal waxy corn by a 2-step fermentation. Intl J Food Sci Technol 49: 1707-1714. DOI: 10.1111/ijfs.12479.
Kraboun K, Kongbangkerd T, Rojsuntornkitti K, Phanumong P. 2019. Factors and advances on fermentation of Monascus sp. for pigments and monacolin K production: a review. Intl Food Res J 26: 751-761.
Kraboun K, Rojsuntornkitti K , Jittrepotch N, Kongbangkerd T, Uthai N, Pechyen C. 2023. Formation analysis of primary and secondary metabolites during angkak fermentation based on GC-TOF-MS, GC-FID, and HPLC and metabolomics analysis. The Microbe 1: 100006. DOI: 10.1016/j.microb.2023.100006.
Kraboun K, Thongchuang M, Chinpongpanich A, Rojsuntornkitti K, Kongbangkerd T. 2022. Effect of partial substitution of spray dried ripe Hom Thong banana powder with hom thong banana flour on in vitro starch digestibility and antioxidant properties of Hom Thong banana tablets and their chemometrics. J microbiol biotechnol food sci 12: e5875. DOI: 10.55251/jmbfs.5875.
Lee JY, Kim YG, Her JY, Kim MK, Lee KG. 2018. Reduction of biogenic amine contents in fermented soybean paste using food additives. LWT - Food Sci Technol 98: 470-476. DOI: 10.1016/j.lwt.2018.09.015.
Misra DS, Maitia R, Ghosh D. 2019. Protection of swimming-induced oxidative stress in some vital organs by the treatment of composite extract of Withania somnifera, Ocimum sanctum and Zingiber officinalis in male rat. Afr J Tradit Complement Altern Med 6: 534-543. DOI: 10.4314/ajtcam.v6i4.57194.
Pechyen C, Uthai N, Kraboun K. 2024. Effect of exogenous tannic acid on reduction of biogenic amines and citrinin in monascal soybean and metabolomics analysis. Food Biosci 59: 103842. DOI: 10.1016/j.fbio.2024.103842.
Pollo BJ, Teixeira CA, Belinato JR et al. 2021. Chemometrics, comprehensive two-dimensional gas chromatography and “omics” sciences: Basic tools and recent applications. TrAC, Trends Anal Chem 134: 116111. DOI: 10.1016/J. TRAC.2020.116111.
Rodionova OY, Oliveri P, Malegori C, Pomerantsev AL. 2023. Chemometrics as an efficient tool for food authentication: Golden pillars for building reliable models. Trends Food Sci 1270: 341304. DOI: 10.1016/j.aca.2023.341304.
Wei S, He Y, Yang J, Li Y, Liu Z, Wang W. 2022. Effects of exogenous ascorbic acid on yields of citrinin and pigments, antioxidant capacities, and fatty acid composition of Monascus ruber. LWT-Food Sci Technol 54: 112800. DOI: 10.1016/j.lwt.2021.112800.
Yang J, Chen Q, Wang W, Hu J, Hu C. 2015. Effect of oxygen supply on Monascus pigments and citrinin production in submerged fermentation. J Biosci Bioeng 119: 564-569. DOI: 10.1016/j.jbiosc.2014.10.014.
Yang J, Li M, Wang Y, Wu H, Zhen T, Xiong L, Sun Q. 2019. Double cross- linked chitosan composite films developed with oxidized tannic acid and ferric ions exhibit high strength and excellent water resistance. Biomacromolecules 20: 801-812. DOI: 10.1021/acs.biomac.8b01420.
Ye H, Yang J, Xiao G, Zhao Y, Li Z, Bai W, Zeng X, Dong H. 2023. A comprehensive overview of emerging techniques and chemometrics for authenticity and traceability of animal-derived food. Food Chem 402: 134216. DOI: 10.1016/j.foodchem.2022.134216.
Yongsmith B, Kitprechavanich V, Chitradon L, Chaisrisook C, Budda N. 2000. Color mutants of Monascus sp. KB9 and their comparative glucoamylase on rice solid cultures. J Mol Catal B Enzym 10: 263-272. DOI: 10.1016/S1381-1177(00)00109-0.