Effects of different application doses of black soldier fly frass Hermetia illucens (Diptera: Stratiomydae) on soybean plant performances and arthropod abundance

##plugins.themes.bootstrap3.article.main##

DWI HARYA YUDISTIRA
YONGKI UMAM SANDI
BAYU ANGGITA WIRABUMI
ARINA DAMAYANTI
PINASINDI WIKANDARI
SATORU SATO

Abstract

Abstract. Yudistira DH, Sandi YU, Wirabumi BA, Damayanti A, Wikandari P, Sato S. 2025. Effects of different application doses of black soldier fly frass Hermetia illucens (Diptera: Stratiomydae) on soybean plant performances and arthropod abundance. Asian J Agric 9: 40-51. Food waste poses a global challenge, contributing approximately 3.49 billion tons of CO2 to the atmosphere annually. Recycling this waste into valuable soil nutrients is a viable solution. This study focuses on black soldier fly Hermetia illucens L. (Diptera: Stratiomydae) larvae, which convert organic waste into protein-rich biomass and frass, a potential soil amendment. However, the effects of black soldier fly frass on crop performance and biodiversity remain underexplored. We investigated the impact of three different frass doses (0, 2.5, and 5 tons/ha) on the growth of the Tsuruoka soybean variety (Glycine max L.), dadachamame. Results showed no significant differences in plant height (p =0.07), but higher doses increased leaf count (p<0.01) and SPAD values significantly (p<0.001), with 2.5 tons/ha improving leaf count by 26% and SPAD values by 16%. Yield analysis revealed that 2.5 tons/ha increased the number of filled pods by 29% (p<0.05) and reduced empty pods by 52% (p<0.001), thereby enhancing pod quality. Arthropod analysis indicated that 5 tons/ha significantly increased overall arthropod abundance (p<0.001), particularly predators (p<0.001) and herbivores (p<0.001), while 2.5 tons/ha balanced predator abundance, thereby controlling herbivores and supporting biodiversity. These findings suggest that an application dose of 2.5 tons/ha is optimal for improving edamame yield and quality while maintaining a balanced arthropod ecosystem, demonstrating black soldier fly frass as a nutrient-rich, eco-friendly input that supports sustainable agriculture.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Abiya AA, Kupesa DM, Beesigamukama D, Kassie M, Mureithi D, Thairu D, Wesonga J, Tanga CM, Niassy S. 2022. Agronomic performance of kale (brassica oleracea) and swiss chard (beta vulgaris) grown on soil amended with black soldier fly frass fertilizer under wonder multistorey gardening system. Agronomy 12(9). https://doi.org/10.3390/agronomy12092211
Agustiyani D, Agandi R, Arinafril, Nugroho AA, Antonius S. 2021. The effect of application of compost and frass from Black Soldier Fly Larvae (Hermetia illucens L.) on growth of pakchoi (Brassica rapa L.). In: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd
Anyega AO, Korir NK, Beesigamukama D, Changeh GJ, Nkoba K, Subramanian S, van Loon JJA, Dicke M, Tanga CM. 2021. Black soldier fly-composted organic fertilizer enhances growth, yield, and nutrient quality of three key vegetable crops in sub-saharan africa. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.680312
Ayilara MS, Olanrewaju OS, Babalola OO, Odeyemi O (2020) Waste management through composting: challenges and potentials. Sustainability (Switzerland) 12.
Basri NEA, Azman NA, Ahmad IK, Suja F, Jalil NAA, Amrul NF. 2022. Potential applications of frass derived from black soldier fly larvae treatment of food waste: A Review. Foods 11(7).
Bebber DP, Richards VR. 2022. A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. Applied Soil Ecology 175. https://doi.org/10.1016/j.apsoil.2022.104450
Beesigamukama D, Mochoge B, Korir N, Ghemoh CJ, Subramanian S, Tanga CM. 2021. In situ nitrogen mineralization and nutrient release by soil amended with black soldier fly frass fertilizer. Sci Rep 11(1). https://doi.org/10.1038/s41598-021-94269-3
Beesigamukama D, Subramanian S, Tanga CM. 2022. Nutrient quality and maturity status of frass fertilizer from nine edible insects. Sci Rep 12(1). https://doi.org/10.1038/s41598-022-11336-z
Bonser SP, Reader RJ. 1995. Plant competition and herbivory in relation to vegetation biomass. Ecology 76(7): 2176-2183. https://doi.org/10.2307/1941691
Borkent S, Hodge S. 2021. Glasshouse eval__uation of the black soldier fly waste product hexafrassTM as an organic fertilizer. Insects 12(11). https://doi.org/10.3390/insects12110977
Boudabbous K, Hammami SBM, Toukabri W, Bouhaouel I, Ayed S, Fraihi W, Gastli M, Chaalala S, Labidi S. 2023. Black soldier fly (Hermetia illucens) larvae frass organic fertilizer improves soil quality and the productivity of durum wheat. Commun Soil Sci Plant Anal 54(18):2491–2507. https://doi.org/10.1080/00103624.2023.2227208
Chatzistathis T, Kavvadias V, Sotiropoulos T, Papadakis IE. 2021. Organic fertilization and tree orchards. Agriculture (Switzerland) 11
Chen Y, Ruberson JR, Olson DM. 2008. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol Exp Appl 126(3):244–255. https://doi.org/10.1111/j.1570-7458.2007.00662.x
Chiam Z, Lee JTE, Tan JKN, Song S, Arora S, Tong YW, Tan HTW. 2021. eval__uating the potential of okara-derived black soldier fly larval frass as a soil amendment. J Environ Manage 286. https://doi.org/10.1016/j.jenvman.2021.112163
Dinis I, Ortolani L, Bocci R, Brites C. 2015. Organic agriculture values and practices in Portugal and Italy. Agric Syst 136:39–45. https://doi.org/10.1016/j.agsy.2015.01.007
FAO. 2011. Global food losses and food waste – Extent, causes and prevention. FAO, Rome
Farji-Brener AG, Werenkraut V. 2017. The effects of ant nests on soil fertility and plant performance: a meta-analysis. Journal of Animal Ecology 86(4):866–877. https://doi.org/10.1111/1365-2656.12672
Fischer H, Romano N, Sinha AK. 2021. Conversion of spent coffee and donuts by black soldier fly (Hermetia illucens) larvae into potential resources for animal and plant farming. Insects 12(4). https://doi.org/10.3390/insects12040332
Fuertes-Mendizábal T, Salcedo I, Huérfano X, Riga P, Estavillo JM, Ávila Blanco D, Duñabeitia MK. 2023. Mealworm frass as a potential organic fertilizer in synergy with pgp-based biostimulant for lettuce plants. Agronomy 13(5). https://doi.org/10.3390/agronomy13051258
Gärttling D, Schulz H. 2022. Compilation of black soldier fly frass analyses. J Soil Sci Plant Nutr 22(1):937–943. https://doi.org/10.1007/s42729-021-00703-w
Gebremikael MT, Wickeren N van, Hosseini PS, De Neve S. 2022. The impacts of black soldier fly frass on nitrogen availability, microbial activities, c sequestration, and plant growth. Front Sustain Food Syst 6. https://doi.org/10.3389/fsufs.2022.795950
Gong S, Hodgson JA, Tscharntke T, Liu Y, van der Werf W, Batáry P, Knops JMH, Zou Y (2022) Biodiversity and yield trade-offs for organic farming. Ecol Lett 25(7):1699–1710. https://doi.org/10.1111/ele.14017
Gu S, Zalucki MP, Men X, Li J, Hou R, Zhang Q, Ge F, Ouyang F. 2022. Organic fertilizer amendment promotes wheat resistance to herbivory and biocontrol services via bottom-up effects in agroecosystems. J Pest Sci 95(1):339–350. https://doi.org/10.1007/s10340-021-01377-0
Guanzon Y. 2003. Composting of organic wastes: a main component for successful integrated solid waste management in philippine cities. https://doi.org/10.13140/2.1.4224.8485
Gunadi B, Edwards CA, Arancon NQ. 2002. Changes in trophic structure of soil arthropods after the application of vermicomposts. Eur. J. Soil Biol. 38(2): 161-165. https://doi.org/10.1016/S1164-5563(02)01139-1
Hasibuan R, Cindowarni O, Lumbanraja J, Lumbanraja FR. 2022. Impact of soil fertilization on arthropod abundance and diversity on soybean agroecosystem. Biodiversitas 23(4):1828–1835. https://doi.org/10.13057/biodiv/d230415
Houben D, Daoulas G, Faucon MP, Dulaurent AM. 2020. Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-61765-x
Kagata H, Ohgushi T. 2012. Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Popul Ecol 54(1):75–82. https://doi.org/10.1007/s10144-011-0281-6
Kamimura C, Takiguchi K, Kawakami T, Hata M, Iijima N, Hoshino T. 2016. Genetic basis of the sweet taste in edamame cultivars, dadachamame, for improving the eating quality. ???????? 19:30–34
Katz DSW. 2016. The effects of invertebrate herbivores on plant population growth: a meta-regression analysis. Oecologia 182(1):43–53. https://doi.org/10.1007/s00442-016-3602-9
Kautz T, López-Fando C, Ellmer F. 2006. Abundance and biodiversity of soil microarthropods as influenced by different types of organic manure in a long-term field experiment in central Spain. Applied Soil Ecology 33(3):278–285. https://doi.org/10.1016/j.apsoil.2005.10.003
Kawasaki K, Kawasaki T, Hirayasu H, Matsumoto Y, Fujitani Y. 2020. eval__uation of fertilizer value of residues obtained after processing household organic waste with black soldier fly larvae (Hermetia illucens). Sustainability (Switzerland) 12(12). https://doi.org/10.3390/SU12124920
Klammsteiner T, Turan V, Juárez MFD, Oberegger S, Insam H. 2020. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy 10(10 October). https://doi.org/10.3390/agronomy10101578
Koshika N, Shioya N, Fujimura T, Oguchi R, Ota C, Kato E, Takahashi R, Kimura S, Furuno S, Saito K, Okabe K, Watanabe M, Hoshino T. 2022. Development of Ethyl Methanesulfonate Mutant Edamame Soybean (Glycine max (L.) Merr.) Populations and Forward and Reverse Genetic Screening for Early-Flowering Mutants. Plants 11(14). https://doi.org/10.3390/plants11141839
Ku?áková E, Cesarz S, Münzbergová Z, Eisenhauer N. 2018. Soil microarthropods alter the outcome of plant-soil feedback experiments. Sci Rep 8(1). https://doi.org/10.1038/s41598-018-30340-w
Lopes IG, Yong JW, Lalander C. 2022. Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Management 142:65–76
Ludwig JA, Reynolds JF. 1988. Statistical Ecology: A Primer on Methods and Computing. Wiley, United States.
Martínez-Blanco J, Lazcano C, Christensen TH, Muñoz P, Rieradeval__l J, Møller J, Antón A, Boldrin A. 2013. Compost benefits for agriculture eval__uated by life cycle assessment. A review. Agron Sustain Dev 33:721–732
Menino R, Felizes F, Castelo-Branco MA, Fareleira P, Moreira O, Nunes R, Murta D. 2021. Agricultural value of Black Soldier Fly larvae frass as organic fertilizer on ryegrass. Heliyon 7(1). https://doi.org/10.1016/j.heliyon.2020.e05855
Muller A, Schader C, El-Hage Scialabba N, Brüggemann J, Isensee A, Erb KH, Smith P, Klocke P, Leiber F, Stolze M, Niggli U. 2017. Strategies for feeding the world more sustainably with organic agriculture. Nat Commun 8(1). https://doi.org/10.1038/s41467-017-01410-w
Poveda J. 2021. Insect frass in the development of sustainable agriculture. A review. Agron Sustain Dev 41(5):1–10. https://doi.org/10.1007/s13593-020-00656-x/Published
Rashid MM, Ahmed N, Jahan M, Islam KS, Nansen C, Willers JL, Ali MP. 2017. Higher Fertilizer Inputs Increase Fitness Traits of Brown Planthopper in Rice. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-05023-7
Rummel PS, Beule L, Hemkemeyer M, Schwalb SA, Wichern F. 2021. Black Soldier Fly Diet Impacts Soil Greenhouse Gas Emissions From Frass Applied as Fertilizer. Front Sustain Food Syst 5. https://doi.org/10.3389/fsufs.2021.709993
Ryusuke Oishi. 2019. Food Loss and Waste in Japan. New Food Industry 61(12):908–914
Salah A, Hussein M, Roby E. 2018. Efficiency Of Bio Fertilizers And Compost On Soil Arthropod Diversity And Species Abundance In Organic Tomato Field. https://doi.org/10.15192/PSCP.ASR.2018.21.2.5662
Schmitt E, de Vries W. 2020. Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction. Curr Opin Green Sustain Chem 25
Serafin-Andrzejewska M, Jama-Rodze?ska A, Helios W, Kozak M, Lewandowska S, Zalewski D, Kotecki A. 2024. Influence of nitrogen fertilization, seed inoculation and the synergistic effect of these treatments on soybean yields under conditions in south-western Poland. Sci Rep 14(1). https://doi.org/10.1038/s41598-024-57008-y
Seufert V, Ramankutty N, Foley JA. 2012. Comparing the yields of organic and conventional agriculture. Nature 485:229–232
Shahbuddin D, Othman A, Ahmad Khair AB. 2023. Importance of High Crude Fibre Insect Frass For Effective Alleviation of Ammonium (NH4+) Toxicity and Optimal Growth of the Short-Term Vegetable, Amaranthus tricolor. Sains Malays 52(3):771–782. https://doi.org/10.17576/jsm-2023-5203-07
Snyder WE, Evans EW. 2006. Ecological effects of invasive arthropod generalist predators. Annu Rev Ecol Evol Syst 37:95–122
Staley JT, Girling RD, Stewart-Jones A, Poppy GM, Leather SR, Wright DJ. 2011. Organic and conventional fertilizer effects on a tritrophic interaction: Parasitism, performance and preference of Cotesia vestalis. Journal of Applied Entomology 135(9):658–665. https://doi.org/10.1111/j.1439-0418.2010.01604.x
Suleiman AKA, Harkes P, van den Elsen S, Holterman M, Korthals GW, Helder J, Kuramae EE. 2019. Organic amendment strengthens interkingdom associations in the soil and rhizosphere of barley (Hordeum vulgare). Science of the Total Environment 695. https://doi.org/10.1016/j.scitotenv.2019.133885
Tanga CM, Beesigamukama D, Kassie M, Egonyu PJ, Ghemoh CJ, Nkoba K, Subramanian S, Anyega AO, Ekesi S. 2022. Performance of black soldier fly frass fertiliser on maize (Zea mays L.) growth, yield, nutritional quality, and economic returns. J Insects Food Feed 8(2):185–196. https://doi.org/10.3920/JIFF2021.0012
Trisnawati DW, Tsukamoto T, Yasuda H. 2015. Indirect effects of nutrients in organic and conventional paddy field soils on the rice grasshopper, Oxya japonica (Orthoptera: Acrididae), mediated by rice plant nutrients. Appl Entomol Zool 50(1):99–107. https://doi.org/10.1007/s13355-014-0309-4
Tuck SL, Winqvist C, Mota F, Ahnström J, Turnbull LA, Bengtsson J. 2014. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. Journal of Applied Ecology 51:746–755
Vaidya C, Vandermeer J. 2021. Ant’s choice: The effect of nutrients on a key ant–hemipteran mutualism. Arthropod Plant Interact 15(4):545–550. https://doi.org/10.1007/s11829-021-09833-5
Viketoft M, Riggi LGA, Bommarco R, Hallin S, Taylor AR. 2021. Type of organic fertilizer rather than organic amendment per se increases abundance of soil biota. PeerJ 9. https://doi.org/10.7717/peerj.11204
Watson C, Schlösser C, Vögerl J, Wichern F. 2021. Excellent excrement? Frass impacts on a soil’s microbial community, processes and metal bioavailability. Applied Soil Ecology 168. https://doi.org/10.1016/j.apsoil.2021.104110