Exploring indigenous Bacillus spp. as a biostimulant to enhance the growth and yield of rice under glasshouse conditions

##plugins.themes.bootstrap3.article.main##

RAKIBA SHULTANA
ALI TAN KEE ZUAN
MD MASUD RANA
UMME AMINUN NAHER
PRIYA LAL CHANDRA PAUL
MASUDA AKTER
SADIA AFRIN SHUPTA
TAPON KUMAR ROY
https://orcid.org/0000-0002-9815-319X

Abstract

Abstract. Shultana R, Zuan ATK, Rana MM, Naher UA, Paul PLC, Akter M, Shupta SA, Roy TK. 2025. Exploring indigenous Bacillus spp. as a biostimulant to enhance the growth and yield of rice under glasshouse conditions. Asian J Agric 9: 131-139. Plant growth-promoting rhizobacteria (PGPR) appeared as an emerging approach to sustainable agriculture because of their ability to reduce the need for synthetic fertilizers. This study evaluated five potential Bacillus strains isolated from rice-growing areas in northern Malaysia for their ability to enhance rice growth parameters under laboratory and glasshouse conditions. Among the five strains, two UPMRB9 (Bacillus tequilensis 10b) and UPMRE6 (Bacillus aryabhattai B8W22) exhibited all the desired traits. These strains were subsequently inoculated into three potential rice plants, resulting in improved morphological (plant height, leaf area), physiological (photosynthesis, transpiration, stomatal conductance, dry biomass, and grain yield), and biochemical (total chlorophyll, total proline content, total soluble sugar, and uptake of N, P, K, Ca, and Mg) attributes. Inoculation of Putra-1 plants with UPMRB9 showed a 10.76% increase in plant height, a 50.82% increase in grain yield, a 12.32% increase in colonization, and a 56% increase in stomatal conductance. Additionally, inoculation of BRRI dhan67 with UPMRB9 reduced the transpiration rate by 100.89%. MR297 plants treated with UPMRB9 demonstrated an 86.58% increase in leaf area, a 125.81% increase in photosynthesis, a 222.19% increase in dry biomass, a 56.03% increase in total chlorophyll, a 62.93% increase in proline content, and a 62.93% increase in total soluble sugar (TSS). Therefore, UPMRB9, as a multiple plant growth promoter, could be an alternative to synthetic fertilizers for rice cultivation.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Abbas, R., Rasul, S., Aslam, K., Baber, M., Shahid, M., Mubeen, F., and Naqqash, T. (2019). Halotolerant PGPR: A hope for cultivation of saline soils. J. King Saud Univ. Sci. 31: 1195–1201. https://doi.org/10.1016/j.jksus.2019.02.019
Abdullahi, S., Muhammed, Y.G., Muhammad, A., Ahmed, J.M., and Shehu, D. (2021). Isolation and Characterization of Bacillus Spp. for Plant Growth Promoting Properties. Acta Biol. Marisiensis, 5: 47–58. https://doi.org/10.2478/abmj-2022-0009
Alquéres, S., Meneses, C., Rouws, L., Rothballer, M., Baldani, I., Schmid, M., and Hartmann, A. (2013). The Bacterial Superoxide Dismutase and Glutathione Reductase Are Crucial for Endophytic Colonization of Rice Roots by Gluconacetobacter diazotrophicus PAL5. Mol. Plant-Microb. Interact. 26: 937–945. https://doi.org/10.1094/MPMI-12-12-0286-R
Aswathy, S.K., Sridar, R., and Sivakumar, U. (2017). Mitigation of drought in rice by a phyllosphere bacterium Bacillus altitudinis FD48. Afr. J. Microbiol. Res. 11: 1614–1625. https://doi.org/10.5897/AJMR2017.8610
Awang, Y., Shaharom, A.S., Mohamad, R.B., and Selamat, A. (2009). Chemical and Physical Characteristics of Cocopeat-Based Media Mixtures and Their Effects on the Growth and Development of <i>Celosia cristata</i> Am. J. Agric. Biol. Sci. 4: 63–71. https://doi.org/10.3844/ajabssp.2009.63.71
Bates, L.S., Waldren, R.A., and Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207.
Beauregard, P.B., Chai, Y., Vlamakis, H., Losick, R., and Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proc. Natl. Acad. Sci. 110: https://doi.org/10.1073/pnas.1218984110
Bisht, N., Mishra, S.K., and Chauhan, P.S. (2020). Bacillus amyloliquefaciens inoculation alters physiology of rice (Oryza sativa L. var. IR-36) through modulating carbohydrate metabolism to mitigate stress induced by nutrient starvation. Int. J. Biol. Macromol. 143: 937–951. https://doi.org/10.1016/j.ijbiomac.2019.09.154
Danhorn, T., and Fuqua, C. (2007). Biofilm Formation by Plant-Associated Bacteria. Annu. Rev. Microbiol. 61:401–422. https://doi.org/10.1146/annurev.micro.61.080706.093316
Fahad, S., Adnan, M., Noor, M., Arif, M., Alam, M., Khan, I.A., Ullah, H., Wahid, F., Mian, I.A., Jamal, Y., Basir, A., Hassan, S., Saud, S., Amanullah, R.M., Wu, C., Khan, A., and Wang, D. (2019). Major Constraints for Global Rice Production. In Advances in Rice Research for Abiotic Stress Tolerance (pp. 1–22). Elsevier. https://doi.org/10.1016/B978-0-12-814332-2.00001-0
FAO. (2023). Crop Prospects and Food Situation-Quarterly Global Report. FAO. https://doi.org/10.4060/cc4665en
Golpayegani, A., and THG. (2011). Effect of biological fertilizers on biochemical and physiological parameters of basil (Ociumum basilicm L.) medicine plant. Am. Eurasian. J. Agric. Environ. Sci. 11:411–416.
Gordon, S.A., and Weber, R.P. (1951). Colorimetric estimation of indoleacetic acid. Plant Physiol. 26: 192.
Goteti, P.K., Emmanuel, L.D.A., Desai, S., and Shaik, M.H.A. (2013). Prospective Zinc Solubilising Bacteria for Enhanced Nutrient Uptake and Growth Promotion in Maize (Zea mays L.). Int. J. Microbiol. 2013:1–7. https://doi.org/10.1155/2013/869697
Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J., & Ahmad, A. (2012). Role of proline under changing environments: a review. Plant signaling & behavior, 7(11), 1456–1466. https://doi.org/10.4161/psb.21949
Idris, E.E., Bochow, H., Ross, H., and Borriss, R. (2004). Use of Bacillus subtilis as biocontrol agent. VI. Phytohormone-like action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Dis. Protect. 111:583–597.
Idriss, E.E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., and Borriss. R. (2002). Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect a aThe GenBank accession numbers for the sequences determined in this work are AY055219 to AY055226. Microbiol. 148: 2097–2109. https://doi.org/10.1099/00221287-148-7-2097
Ikhajiagbe, B., and Osazee, O.E. (2019). GROWTH AND YIELD ASSESSMENT OF RICE (ORYZA SATIVA) AFTER RHIZO-INOCULATION WITH SELECTED PLANT GROWTHPROMOTING RHIZOBACTERIA IN A FERRIC ULTISOL. (Vol. 29). www.studiauniversitatis.ro
Kloepper, J.W., Reddy, M.S., Rodríguez-Kabana, R., Kenney, D.S., Kokalis-Burelle, N., and Martinez-Ochoa, N. (2004a). APPLICATION FOR RHIZOBACTERIA IN TRANSPLANT PRODUCTION AND YIELD ENHANCEMENT. Acta Hortic. 631:219–229. https://doi.org/10.17660/ActaHortic.2004.631.28
Kloepper, J., Reddy, M., Rodríguez-Kabana, R., Kenney, D.S., Kokalis-Burelle, N., and Martinez-Ochoa, N. (2004b). APPLICATION FOR RHIZOBACTERIA IN TRANSPLANT PRODUCTION AND YIELD ENHANCEMENT. Acta Hortic. 631:219–229. https://doi.org/10.17660/ActaHortic.2004.631.28
Krishnamurthy, K., and Gnanamanickam, S.S. (1998). Biological Control of Rice Blast byPseudomonas fluorescensStrainPf7–14: eval___uation of a Marker Gene and Formulations. Biol. Control. 13: 158–165. https://doi.org/10.1006/BCON.1998.0654
Kumar, P., Dubey, R.C., and Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167: 493–499. https://doi.org/10.1016/j.micres.2012.05.002
Mahmood, S., Daur, I., Al-Solaimani, S.G., Ahmad, S., Madkour, M.H., Yasir, M., Hirt, H., Ali, S., and Ali, Z. (2016). Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00876
Meneses, C.H.S.G., Rouws, L.F.M., Simões-Araújo, J.L., Vidal, M.S., and Baldani, J.I. (2011). Exopolysaccharide Production Is Required for Biofilm Formation and Plant Colonization by the Nitrogen-Fixing Endophyte Gluconacetobacter diazotrophicus. Mol. Plant-Microb. Interact. 24:1448–1458. https://doi.org/10.1094/MPMI-05-11-0127
Miché, L., and Balandreau, J. (2001). Effects of Rice Seed Surface Sterilization with Hypochlorite on Inoculated Burkholderia vietnamiensis. Appl. Environ. Microbiol. 67: 3046–3052. https://doi.org/10.1128/AEM.67.7.3046-3052.2001
Redondo-Gómez, S., Mesa-Marín, J., Pérez-Romero, J.A., Mariscal, V., Molina-Heredia, F.P., Álvarez, C., Pajuelo, E., Rodríguez-Llorente, I.D., and Mateos-Naranjo, E. (2023). Plant Growth-Promoting Rhizobacteria Improve Rice Response to Climate Change Conditions. Plants. 12: 2532. https://doi.org/10.3390/plants12132532
Ríos-Ruiz, W.F., Torres-Chávez, E.E., Torres-Delgado, J., Rojas-García, J.C., Bedmar, E.J., and Valdez-Nuñez, R.A. (2020). Inoculation of bacterial consortium increases rice yield (Oryza sativa L.) reducing applications of nitrogen fertilizer in San Martin region, Peru. Rhizosphere. 14:100200. https://doi.org/10.1016/j.rhisph.2020.100200
Roy, T. K., Kabir, M. M. M., Akter, S., Nayeem, A., Alam, Z., Hasan, M. R., Bari, M. N., & Sannal, A. (2024 a). Seasonal variations of insect abundance: Correlating growth stage-specific metrics with weather patterns in Rangpur Region, Bangladesh. Heliyon, 10(18), e38121. https://doi.org/10.1016/j.heliyon.2024.e38121
Roy, T. K., Sannal, A., Tonmoy, S. M. M. S., Akter, S., Roy, B., Rana, Md. M., Alam, Z., & Hasan, Md. R. (2024 b). Trait analysis of short duration boro rice (Oryza sativa L.) varieties in northern region of Bangladesh: Insights from heatmap, correlation and PCA. Nova Geodesia, 4(2), 175. https://doi.org/10.55779/ng42175
Ryu, C.M., Farag, M.A., Hu, C.H., Reddy, M.S., Wei, H.X., Paré, P.W., and Kloepper, J.W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci., 100: 4927–4932. https://doi.org/10.1073/pnas.0730845100
Samaniego-Gámez, B.Y., Garruña, R., Tun-Suárez, J.M., Kantun-Can, J., Reyes-Ramírez, A., and Cervantes-Díaz, L. (2016). Bacillus spp. inoculation improves photosystem II efficiency and enhances photosynthesis in pepper plants. Chil. J. Agric. Res. 76: 409–416. https://doi.org/10.4067/S0718-58392016000400003
Sharma, A., Shankhdhar, D., Sharma, A., and Shankhdhar, S.C. (2014). Growth promotion of the rice genotypes by pgprs isolated from rice rhizosphere. J. Soil Sci. Plant Nutr. 505–517. https://doi.org/10.4067/S0718-95162014005000040
Shultana, R., Mamun, M.A.A., and Mridha, A.J. (2013). Impacts of different competition duration of Echinochloa crusgalli on transplanted aman rice. Am. Open J. Agric. Res. 1: 14-23.
Shultana, R., Tan, K.Z.A., Yusop, M.R., Mohd, S.H., and Ayanda, A.F. (2020). Effect of Salt-Tolerant Bacterial Inoculations on Rice Seedlings Differing in Salt-Tolerance under Saline Soil Conditions. Agronomy. 10: 1030. https://doi.org/10.3390/agronomy10071030
Souza, R.de., Ambrosini, A., and Passaglia, L.M.P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38: 401–419. https://doi.org/10.1590/S1415-475738420150053
Tan, K.Z., Radziah, O., Halimi, M.S., Khairuddin, A.R., and Habib, S.H., and Shamsuddin, H.S. (2014). Isolation and characterization of Rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. Am. J. Agric. Biol. Sci. 93:342–360.
Upadhyay, S.K., Singh, J.S., Saxena, A.K., and Singh, D.P. (2012). Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol. 14: 605–611. https://doi.org/10.1111/j.1438-8677.2011.00533.x
Vessey, J.K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 255: 571–586. https://doi.org/10.1023/A:1026037216893
Vimal, S. (2018). Effect of Plant Growth Promoting Rhizobacteria (PGPR) and Farmyard Manure (FYM) Amendment on growth parameters and antioxidant level in paddy (Oryza Sativa L.) crop under soil salinity. (Doctoral dissertation). Babasaheb Bhimrao Ambedkar University.
Xie, S.S., Wu, H.J., Zang, H.Y., Wu, L.M., Zhu, Q.Q., and Gao, X.W. (2014). Plant Growth Promotion by Spermidine-Producing Bacillus subtilis OKB105. Mol. Plant-Microb. Interact. 27: 655–663. https://doi.org/10.1094/MPMI-01-14-0010-R
Yemm, E.W., and Willis, A.J. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57: 508–514. https://doi.org/10.1042/bj0570508