Potential of Pseudomonas stutzeri strains isolated from rhizospheric soil endowed with antifungal activities against phytopathogenic fungus Stemphylium botryosum

##plugins.themes.bootstrap3.article.main##

SLIMANE MOKRANI
BILEL BEJAOUI
LAKHDER BELABID
EL-HAFID NABTI

Abstract

Abstract. Mokrani S, Bejaoui B, Belabid L, Nabti E. 2019. Potential of Pseudomonas stutzeri strains isolated from rhizospheric soil endowed with antifungal activities against phytopathogenic fungus Stemphylium botryosum. Asian J Agric 3: 47-54. In this study, two Pseudomonas strains P4 and P5 were isolated from rhizospheric soil and characterized for PGP (Plant Growth Promoting) traits production like HCN (hydrogen cyanide), siderophores and IAA (Indole Acetic Acid). A phylogenic tree based on 16S DNAr identification-related the two strains P4 and P5 to Pseudomonas stutzeri NR 116489 and NR 113652.1. One phytopathogenic fungus St-bt (Stemphylium botryosum) was isolated from Phaseolus vulgaris L. Macroscopic and microscopic identification attributed it to the genus Stemphylium. Antifungal activities of the two Pseudomonas strains P4 and P5 against fungus isolate St-bt had revealed very highly significant inhibition percentages of 38.46± 3.85% and 56.56± 2.22% for each strain, respectively.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Adhikari A, Nandi S, Bhattacharya I, De Roy M, Mandal T, Dutta S (2015) Phylogenetic analysis based evolutionary study of 16S rRNA in known Pseudomonas sp. Bioinformation 11:474–480. https://doi.10.6026/97320630011474.
Agrios GN (1988) Plant Pathology, 3rd. ed. Academic Press: San Diego, USA.
Alström S, Burns RG (1989) Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils 7:232–238. https://doi.org/10.1007/bf00709654.
Altieri M (1989) Agroecology: a new research and development paradigm for world agriculture. Agric. Ecosyst. Environ 27:37–46.
Ben Hassena A (2009) Induction de la réaction de défense chez les plantes pour lutter contre les maladies. Mémoire d’ingénieur. Institut national agronomique, Tunisie.
Bennasar A, Rosselló-Mora R, Lalucat J, Moore ERB (1996) 16S rRNA gene sequence analyses relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 46:200–205. https://doi.org/10.1099/00207713-46-1-200.
Barea JM, Calvet C, Estaun V, Camprubi A (1996) Biological control as a key component in sustainable agriculture. Plant and soil 185:171–172. https://doi.org/10.1007/bf02257521.
Boutkhil S (2012) Les principaux maladies fongiques de l’olivier (Olea europea L) en Algérie: réparation géographique et importance. Mémoire de magister. Université d’Oran, Algérie.
Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Applied and Environmental Microbiology 57:535–538.
Bultreys A, Gheysen I, Maraite H, de Hoffmann E (2001) Characterization of Fluorescent and Nonfluorescent Peptide Siderophores Produced by Pseudomonas syringae Strains and Their Potential Use in Strain Identification. Appl. Environ. Microbiol 67:1718–1727. https://doi.org/10.1128/aem.67.4.1718-1727.2001.
Caudillo-Ruiz KB, Bhadauria V, Banniza S (2017) Aetiology of Stemphylium blight on lentil in Canada. Canadian Journal of Plant Pathology 39:422–432. https://doi.org/10.1080/07060661.2017.1378728.
Chauhan A, Ranjan A, Jindal T (2018) Biological control agents for sustainable agriculture, safe water and soil health. In: Jindal T (ed) Paradigms in Pollution Prevention. Springer, Cham, pp 71–83.
Cook RJ (1993) Making greater use of introduced microorganisms for biological-control of plantpathogens. Annu Rev Phytopathol 31:53–80. https://doi.org/10.1146/annurev.phyto.31.1.53.
Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology 71:4951–4959. https://doi.org/10.1128/aem.71.9.4951-4959.2005.
Datta C, Basu P (2000) lndole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cojan. Microbiol. Res 155:123–127. https://doi.org/10.1016/s0944-5013(00)80047-6.
Essén SA, Johnsson A, Bylund D, Pedersen K, Lundström US (2007) Siderophore production by Pseudomonas stutzeri under aerobic and anaerobic conditions. Appl. Environ. Microbiol 73:5857–5864. https://doi.org/10.1128/aem.00072-07.
Gimenez E, Salinas M, Manzano-Agugliaro F (2018) Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability 10:391. https://doi.org/10.3390/su10020391.
Goldman GH, Hayes C, Harman GE (1994) Molecular and cellular biology of biocontrol by Trichoderma spp. Trends Biotechnol 12:478–482. https://doi.org/10.1016/0167-7799(94)90055-8.
González de Molina M, Soto Fernández D, Infante-Amate J, Aguilera E, Vila Traver J, Guzmán GI (2017) Decoupling food from land: the evolution of Spanish agriculture from 1960 to 2010. Sustainability 9:2348. https://doi.org/10.3390/su9122348.
Grewal RK, Jhooty JS (1984) Rating of gram blight in fungicidal trials. Crop. Improv 11:71–72.
Hernandez-Perez P, du Toit LJ (2006) Seedborne Cladosporium variabile and Stemphylium botryosum in spinach. Plant Dis 90:137–145.
Hosen MI, Ahmed AU, Zaman J, Ghosh S, Hossain KMK (2009) Cultural and physiological variation between isolates of Stemphylium botryosum the causal of Stemphylium blight disease of lentil (Lens culinaris). World Journal of Agricultural Sciences 5:94–98.
Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1–19. https://doi.org/10.1080/23311932.2015.1127500.
Kremer RJ, Souissi T (2001) Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current microbiology 43:182–186. https://doi.org/10.1007/s002840010284.
Kuang-Ren C, Turksen S, Umran E, Timmer LW, Peter PU (2003) Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiology Letters 226:23–30. https://doi.org/10.1016/s0378-1097(03)00605-0.
Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol. Mol. Biol. Rev 70:510–547. https://doi.org/10.1128/mmbr.00047-05.
Landa BB, Hervas A, Bettiol W, Jimenez-D?az RM (1997) Antagonistic activity of Bacteria from the Chickpea Rhizosphere against Fusarium Oxysporium f.sp. Ciceris. Phytoparasitica 25:305–318. https://doi.org/10.1007/bf02981094.
Lecellier A (2013) Caractérisation et identification des champignons filamenteux par spectroscopie vibrationnelle. Thèse de doctorat. Université de Reims Champgne-Ardenne, France.
Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiologia Plantarum 1:142–146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x.
Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P, Achouak W, Palleroni NJ (2002) Siderophore Typing, a Powerful Tool for the identification of Fluorescent and Non-fluorescent Pseudomonads. Appl. Environ. Microbiol 68:2745–2753. https://doi.org/10.1128/aem.68.6.2745-2753.2002.
Mishra J, Arora NK (2017) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Applied Soil Ecology 125:35–45. https://doi.org/10.1016/j.apsoil.2017.12.004.
Mittler R, Blumwald E (2010) Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology 61:443–462. https://doi.org/10.1146/annurev-arplant-042809-112116.
Mokrani S, Rai A, Belabid L, Cherif A, Cherif H, Mahjoubi M, Nabti E (2019) Pseudomonas diversity in western Algeria: role in the stimulation of bean germination and common bean blight biocontrol. European Journal of Plant Pathology 153:397–415. https://doi.org/10.1007/s10658-018-1566-9.
Mokrani S, Belabid L, Bedjaoui B, Nabti E (2018a) Growth stimulation of Phaseolus vulgaris L plantules by strain Bacillus amyloliquefaciens Hla producer of beneficial agricultural enzymes. JOJ Hortic Arboric 2:1–7.
Morrissey JP, Abbas A, Mark L, Cullinane M, O’Gara F (2004a) Biosynthesis of antifungal metabolites by biocontrol strains of Pseudomonas. In: Ramos JL (ed) The Pseudomonads, Vol. III. Kluwer Press, Dordrecht, pp 635–670.
Mwakutuya (2005) Epidemiology of Stemhylium blight on lentil (Lens culinaris) in Saskatchewan. Thèse de doctorat. University of Saskatchewan, Canada.
Neilands JB (1984) Siderophores of bacteria and fungi. Microbiol. Sci. 1:9–14.
Nobutaka S (2008) Biological control of fungal plant diseases using antagonistic bacteria. J Gen Plant Pathol 74:459–460. https://doi.org/10.1007/s10327-008-0131-3.
Nogórska K, Bikowski M, Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim. Pol 54:495–508.
Su YY, Qi YL, Cai L (2012) Induction of sporulation in plant pathogenic fungi. Mycology 3:195–200.
Newton AC, Johnson SN, Gregory PJ (2011) Implications of climate change for diseases, crop yields and food security. Euphytica 179:3–18. https://doi.org/10.1007/s10681-011-0359-4.
O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev 56:662–276.
Pant G, Agrawal PK (2014) Isolation and characterization of indole acetic acid producing plant growth promoting rhizobacteria from rhizospheric soil of Withania somnifera. J Boil Sci Opin 2:377–383. https://doi.org/10.7897/2321-6328.02687.
Pattan, J, Kajale S, Pattan S (2017) Isolation, production and optimization of siderophores (iron chilators) from Pseudomonas fluorescence NCIM 5096 and Pseudomonas from soil rhizosphere and marine water. Int J Curr Microbiol App Sci 6:919–928. https://doi.org/10.20546/ijcmas.2017.603.109.
Pitt JI, Hocking AD (2009) Fungi and food spoilage. 2nd ed. Blackie Academic and Professional. Glasgow, Lanarkshire, UK.
Rijavec T, Lapanje A (2016) Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Frontiers in microbiology 7:1785. https://doi.org/10.3389/fmicb.2016.01785.
Riley MB, Williamson MR, Maloy O (2002) Plant disease diagnosis. The plant health instructor. https://www.apsnet.org/edcenter/intro pp/topics/pages/plantdiseasediagnosis.aspx.
Rosselló R, García-Valdés E, Lalucat J, Ursing J (1991) Genotypic and phenotypic diversity of Pseudomonas stutzeri. Syst. Appl. Microbiol 14:150–157. https://doi.org/10.1016/s0723-2020(11)80294-8.
Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environmental Science and Pollution Research 23:3984–3999. https://doi.org/10.1007/s11356-015-4294-0.
Saleh M, El-Wakeil N, Elbehery H, Gaafar N, Fahim S (2017) Biological Pest Control for Sustainable Agriculture in Egypt. In: Barceló D and Kostianoy AG (eds) The handbook of environmental chemistry. Springer Press, Berlin, Heidelberg, pp 1–44.
Schippers B, Bakker A, Bakker P, van Peer R (1990) Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant and Soil 129:75–83. https://doi.org/10.1007/bf00011693.
Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology 22:641–650. https://doi.org/10.1007/s11274-005-9084-2.
Spiers AJ, Buckling A, Rainey PB (2000) The causes of Pseudomonas diversity. Microbiology 146:2345–2350. https://doi.org/10.1099/00221287-146-10-2345.
Stockwell VO, Stack JP (2007) Using Pseudomonas spp. for integrated biological control. Phytopathology 97:244–249.
Tagele SB, Kim SW, Lee HG, Kim HS, Lee YS (2018) Effectiveness of multi-trait Burkholderia contaminans KNU17BI1 in growth promotion and management of banded leaf and sheath blight in maize seedling. Microbiological Research 214:8–18. https://doi.org/10.1016/j.micres.2018.05.004.
Thomashow LS, Weller DM (1996) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G and Keen NT (eds) Plant-Microbe Interact. Chapman and Hall, New York, pp 87–235.
Terbeche F (2011) Etude de l’activité protéolytique et le profil protéique total chez Ascochyta rabiei. Mémoire de magister. Université Ahmed Ben Bella, Es Senia, Oran, Algérie.
Thilagam R, Kalaivani G, Hemalatha N (2018) Isolation and identification of phytopathogenic fungi from infected plant parts. International Journal of Current Pharmaceutical Research 10:1–26. https://doi.org/10.22159/ijcpr.2018v10i1.24404.
Trivedi P, Pandey A, Palni LMS (2008) In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol. Res 163:329–336. https://doi.org/10.1016/j.micres.2006.06.007.
Ursing JB, Rossellö-Mora RA, Garcia-Valdes E, Lalucat J (1995) Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. International Journal of Systematic and Evolutionary Microbiology 45:604–604. https://doi.org/10.1099/00207713-45-3-604.
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma plant pathogen interactions. Soil Biol Biochem 40:1–10.
Wallace RL, Hirkala DL, Nelson LM (2017) Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biological Control 117:13–20. https://doi.org/10.1016/j.biocontrol.2017.08.019.
Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant growth promoting rhizobacteria under field conditions. Phytopathology 86:221. https://doi.org/10.1094/phyto-86-221.
Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256. https://doi.org/10.1094/phyto-97-2-0250.
Yeole RD, Dave BP, Dube HC (2001) Siderophores production by fluorescent pseudomonads colonizing roots of certain crop plants. Indian Journal of Experimental Biology 39:464–468.
Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol. 61:49–64. https://doi.org/10.1146/annurev-arplant-042809-112308.