Variation in winged bean (Psophocarpus tetragonolobus) growth parameters, seed yield, nodulation, and nitrogen fixation

##plugins.themes.bootstrap3.article.main##

TAOFEEK T. ADEGBOYEGA
MICHAEL T. ABBERTON
ABDELAZIZ H. ABDELGADIR2
DIANDA MAHAMADI
OYATOMI A. OLANIYI
SAM OFODILE
OLUBUKOLA O. BABALOLA

Abstract

Abstract. Adegboyega TT, Abberton MT, Abdelgadir AH, Mahamadi D, Olaniyi OA, Ofodile S, Babalola OO. 2021. Variation in winged bean (Psophocarpus tetragonolobus) growth parameters, seed yield, nodulation, and nitrogen fixation. Asian J Agric 5: 61-71. Underutilized legumes are widely distributed in tropical agriculture and associated with low yield.  Thus they have not really been fully explored due to lack of research investment, breeding programs targeting crop improvement, marketing, and low awareness of nutritional benefits. This study was conducted to determine the variation in growth parameters, seed yield, nodulation, and nitrogen fixation in winged bean (Psophocarpus tetragonolobus) germplasms. High genotypic and phenotypic coefficients of variances were observed in traits evaluated. The combined analysis of variance for five variables of 25-winged bean accessions showed that replication by year interaction was statistically significant (p ? 0.0001) for nodule parameters and dry shoot weight while it was not significant (p = > 0.05) for dry root weight, and total biomass. Significant variations (p = ? 0.05) were observed among the accessions on some growth parameters. The genetic variability of winged beans could be carefully exploited to provide higher grain yield, as well as other economic and important traits to boost food security and conservation of the plant genetic materials.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Abaidoo, R., Dare, M., Killani, S., and Opoku, A. (2017). Evaluation of early maturing cowpea (Vigna unguiculata) germplasm for variation in phosphorus use efficiency and biological nitrogen fixation potential with indigenous rhizobial populations. The Journal of Agricultural Science 155, 102-116.
Adams, M. A., Turnbull, T. L., Sprent, J. I., and Buchmann, N. (2016). Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proceedings of the National Academy of Sciences 113, 4098-4103.
Adegboyega, T. T., Abberton, M. T., AbdelGadir, A. A. H., Dianda, M., Maziya-Dixon, B., Oyatomi, O. A., Ofodile, S., and Babalola, O. O. (2019). Research Article Nutrient and Antinutrient Composition of Winged Bean (Psophocarpus tetragonolobus (L.) DC.) Seeds and Tubers. Journal of Food Quality 2019, 8.
Afridatul, S., and Syukur, M. T., Trikoesoemaningtyas Maharijaya, Awang (2021). Agro-morphological traits and harvest period assessment of winged bean (Psophocarpus tetragonolobus) genotypes for pods production. Biodiversitas Journal of Biological Diversity 22.
Anugroho, F., Kitou, M., Kinjo, K., and Kobashigawa, N. (2010). Growth and nutrient accumulation of winged bean and velvet bean as cover crops in a subtropical region. Plant production science 13, 360-366.
Belane, A. K., Asiwe, J., and Dakora, F. D. (2011). Assessment of N 2 fixation in 32 cowpea (Vigna unguiculata L. Walp) genotypes grown in the field at Taung in South Africa, using 15 N natural abundance. African Journal of Biotechnology 10, 11450-11458.
Boddey, R. M., Fosu, M., Atakora, W. K., Miranda, C. H., Boddey, L. H., Guimaraes, A. P., and Ahiabor, B. D. (2017). Cowpea (Vigna unguiculata) crops in Africa can respond to inoculation with rhizobium. Experimental Agriculture 53, 578-587.
Burton, G. W., and Devane, E. (1953). Estimating Heritability in Tall Fescue (Festuca Arundinacea) from Replicated Clonal Material 1. Agronomy Journal 45, 478-481.
Chalk, P. M. (2016). The strategic role of 15 N in quantifying the contribution of endophytic N 2 fixation to the N nutrition of non-legumes. Symbiosis 69, 63-80.
Dey, S. K., Chakrabarti, B., Prasanna, R., Pratap, D., Singh, S. D., Purakayastha, T. J., and Pathak, H. (2017). Elevated carbon dioxide level along with phosphorus application and cyanobacterial inoculation enhances nitrogen fixation and uptake in cowpea crop. Archives of Agronomy and Soil Science 63, 1927-1937.
Eagleton, G. (2020). Winged bean (Psophocarpus tetragonolobus) cropping systems. Biodiversitas Journal of Biological Diversity 21.
Egbe, M. O., Alhassan, G. A., and Ijoyah, M. (2013). Nodulation, nitrogen yield and fixation by bambara groundnut (Vigna subterranea (L.) Verdc.) landraces intercropped with cowpea and maize in Southern Guinea Savanna of Nigeria. Agricultural Science 1, 15-28.
Esan, A. M., Olaiya, C. O., Adedire, S. T., and Bamigboye, F. E. (2020). Biochemical and Nutritional Importance of Winged Bean (Psophocarpus tetragonolobus (L.)) on Wistar Rats. International Journal of Food Science and Agriculture 4, 174-182.
Fang, Q., Ma, L., Green, T., Yu, Q., Wang, T., and Ahuja, L. (2010). Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agricultural Water Management 97, 1102-1116.
Foyer, C. H., Lam, H.-M., Nguyen, H. T., Siddique, K. H., Varshney, R. K., Colmer, T. D., Cowling, W., Bramley, H., Mori, T. A., and Hodgson, J. M. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature plants 2, 1-10.
Gyogluu, C., Jaiswal, S. K., Kyei-Boahen, S., and Dakora, F. D. (2018). Identification and distribution of microsymbionts associated with soybean nodulation in Mozambican soils. Systematic and applied microbiology 41, 506-515.
Hanson, C., Robinson, H., and Comstock, R. (1956). Biometrical studies of yield in segregating populations of Korean lespedeza 1. Agronomy journal 48, 268-272.
Hartman, G., and Danin, A. (2010). Isotopic values of plants in relation to water availability in the Eastern Mediterranean region. Oecologia 162, 837-852.
Hikam, S., MacKown, C., Poneleit, C., and Hildebrand, D. (1991). Growth and N accumulation in maize and winged bean as affected by N level and intercropping. Annals of Botany 68, 17-22.
Hikam, S., Poneleit, C., MacKown, C., and Hildebrand, D. (1992). Intercropping of maize and winged bean. Crop science 32, 195-198.
Institute, S. (2015). "Base SAS 9.4 procedures guide," SAS Institute.
Juo, A. (1978). Selected methods for soil and plant analysis. IITA Mannual Series (Nigeria).
Kant, A., and Nandan, R. (2018). Performance and variability evaluation in some genotypes of winged bean [Psophocarpus tetragonolobus (L.) DC.]. Int. J. Curr. Microbiol. App. Sci 7, 2104-2108.
Kermah, M., Franke, A., Adjei-Nsiah, S., Ahiabor, B., Abaidoo, R. C., and Giller, K. (2018). N2-fixation and N contribution by grain legumes under different soil fertility status and cropping systems in the Guinea savanna of northern Ghana. Agriculture, ecosystems & environment 261, 201-210.
Khalili, R. M. A., Shafekh, S. E., Norhayati, A., Fatahudin, I. M., Rahimah, R., Norkamaliah, H., and Azimah, A. N. (2013). Total phenolic content and in vitro antioxidant activity of winged bean (Psophocarpus tetragonolobus). Pakistan Journal of Nutrition 12, 416-422.
Klu, G., and Kumaga, F. (1999). Testing of induced mutants of winged bean (Psophocarpus tetragonolobus (L.) DC) for nodulation and phenotypic performance. Ghana Journal of Science 39, 55-62.
Kornerup, A., and Wanscher, J. (1978). Methuen handbook of colour. Eyre Methuen. London.[Google Scholar].
Kumar, M., Tomar, R. S., Lade, H., and Paul, D. (2016). Methylotrophic bacteria in sustainable agriculture. World Journal of Microbiology and Biotechnology 32, 120.
Kyei-Boahen, S., Savala, C. E., Chikoye, D., and Abaidoo, R. (2017). Growth and yield responses of cowpea to inoculation and phosphorus fertilization in different environments. Frontiers in plant science 8, 646.
Lawson, S., and Pike, C. (2017). Stable isotope ratios and reforestation potential in Acacia koa populations on Hawai’i. Annals of Forest Research 60, 279-295.
Leite, J., Fischer, D., Rouws, L. F., Fernandes-Júnior, P. I., Hofmann, A., Kublik, S., Schloter, M., Xavier, G. R., and Radl, V. (2017). Cowpea nodules harbor non-rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Frontiers in Plant Science 7, 2064.
Lepcha, P., Egan, A. N., Doyle, J. J., and Sathyanarayana, N. (2017). A review on current status and future prospects of winged bean (Psophocarpus tetragonolobus) in tropical agriculture. Plant Foods for Human Nutrition 72, 225-235.
Li, L., Yang, T., Liu, R., Redden, B., Maalouf, F., and Zong, X. (2017). Food legume production in China. The Crop Journal 5, 115-126.
Makeri, M. U., Abdulmannan, F., Ilowefah, M. A., Chiemela, C., Shu’aibu, M. B., and Muhammad, K. (2017). Comparative physico-chemical, functional and structural characteristics of winged bean [Psophocarpus tetragonolobus DC] and Soybean [Glycine max.] Protein isolates. Journal of Food Measurement and Characterization 11, 835-846.
Makeri, M. U., Karim, R., Abdulkarim, M. S., Ghazali, H. M., Miskandar, M. S., and Muhammad, K. (2016). Comparative Analysis of the Physico-Chemical, Thermal, and Oxidative Properties of Winged Bean and Soybean Oils. International Journal of Food Properties 19, 2769-2787.
Mapope, N., and Dakora, F. D. (2016). N2 fixation, carbon accumulation, and plant water relations in soybean (Glycine max L. Merrill) varieties sampled from farmers’ fields in South Africa, measured using 15N and 13C natural abundance. Agriculture, Ecosystems & Environment 221, 174-186.
Martin, F. W. (2017). CRC handbook of tropical food crops/editor, Franklin W. Martin.
Massawe, F., Mayes, S., and Cheng, A. (2016). Crop diversity: an unexploited treasure trove for food security. Trends in plant science 21, 365-368.
Mohale, K. C., Belane, A. K., and Dakora, F. D. (2014). Symbiotic N nutrition, C assimilation, and plant water use efficiency in Bambara groundnut (Vigna subterranea L. Verdc) grown in farmers’ fields in South Africa, measured using 15 N and 13 C natural abundance. Biology and fertility of soils 50, 307-319.
Mohamadali, A., Madalageri, M., and Kulkarni, M. (2010). Performance Studies in Winged Bean (Psophocarpus tetragonolobus L) DC.) for Green Vegetable Pod Yield and Its Component Characters. Karnataka Journal of Agricultural Sciences 17.
Mohanty, C. S., Singh, V., and Chapman, M. A. (2020). Winged bean: An underutilized tropical legume on the path of improvement, to help mitigate food and nutrition security. Scientia Horticulturae 260, 108789.
Mohtar, Hamida, A. S., Muhamad SKS, and N, S. (2013). Preparation of bioactive peptide with high angiotensin converting enzyme inhibitory activity from winged bean [Psophocarpus tetragonolobus (L.) DC.] seed. Journal of Food Science Technology 51, 3658–3668.
Murray, J. D., Liu, C.-W., Chen, Y., and Miller, A. J. (2017). Nitrogen sensing in legumes. Journal of Experimental Botany 68, 1919-1926.
Nazri, N. M., Ahmat, N., Adnan, A., Mohamad, S. S., and Ruzaina, S. S. (2011). In vitro antibacterial and radical scavenging activities of Malaysian table salad. African Journal of Biotechnology 10, 5728-5735.
Omotoso, S., and Aluko, M. (2016). Cowpea (Vigna unguiculata (L) Walp.) Performance and yield as influenced by soil types and phosphorus fertilizer in two alfisols at Ado-Ekiti, south-West, Nigeria. Journal of Agriculture, Forestry and the Social Sciences 14, 71-79.
Polania, J. A., Poschenrieder, C., Beebe, S., and Rao, I. M. (2016). Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Frontiers in plant science 7, 660.
Prasanth, K., Sreelathakumary, I., and Celine, V. (2016). Correlation and path analysis studies for green pod yield and component characters in winged bean (Psophocarpus tetragonobolus (L.) DC.) The Bioscan 11, 977-980.
Rahim, N., Abbasi, M. K., and Hameed, S. (2017). Variability in the growth and nodulation of soybean in response to elevation and soil properties in the Himalayan region of Kashmir-Pakistan. Pakistan Journal of Botany 49, 237-247.
Rahman, M., Islam, M., Azirun, M., and Boyce, A. (2014a). Agronomic and Nitrogen recovery efficiency of rice under tropical conditions affected by Nitrogen fertiliser and legume crop rotation. Plant Science 24, 891-896.
Rahman, M. M., Islam, A. M., Azirun, S. M., and Boyce, A. N. (2014b). Tropical legume crop rotation and nitrogen fertilizer effects on agronomic and nitrogen efficiency of rice. The Scientific World Journal 2014.
Rajeshwar, N., Vaishnav, R., Srivastava, K., and Issar, K. (2009). Genetic variability, heritability and genetic advance for yield components in winged bean (Psophocarpus tetragonalobus L.). Asian Journal of Bio Science 4, 298-299.
Schiavinato, M. A., and Válio, I. F. (1996). "Influence of photoperiod and temperature on the development of winged bean plants."
Singh, B. (2001). Plant Breeding: Principles and methods. pp. pp 896. Kalyani Publishers, New Delhi.
Singh, M., Dotaniya, M., Mishra, A., Dotaniya, C., Regar, K., and Lata, M. (2016). Role of biofertilizers in conservation agriculture. In "Conservation Agriculture", pp. 113-134. Springer.
Stout, J., and Rafter, T. (1978). The 13 C/12 C isotopic ratios of some New Zealand tussock grassland soils. In "Stable isotopes in the earth sciences".
Tampakaki, A. P., Fotiadis, C. T., Ntatsi, G., and Savvas, D. (2017). Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece. Systematic and applied microbiology 40, 179-189.
Tanzi, A. S., Eagleton, G. E., Ho, W. K., Wong, Q. N., Mayes, S., and Massawe, F. (2019). Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction. Planta, 1-21.
Ulm, F., Hellmann, C., Cruz, C., and Máguas, C. (2017). N/P imbalance as a key driver for the invasion of oligotrophic dune systems by a woody legume. Oikos 126.
Unkovich, M., Herridge, D., Peoples, M., Cadisch, G., Boddey, B., Giller, K., Alves, B., and Chalk, P. (2008). "Measuring plant-associated nitrogen fixation in agricultural systems," Australian Centre for International Agricultural Research (ACIAR).
van Heerwaarden, J., Baijukya, F., Kyei-Boahen, S., Adjei-Nsiah, S., Ebanyat, P., Kamai, N., Wolde-Meskel, E., Kanampiu, F., Vanlauwe, B., and Giller, K. (2018). Soyabean response to rhizobium inoculation across sub-Saharan Africa: Patterns of variation and the role of promiscuity. Agriculture, ecosystems & environment 261, 211-218.
Vatanparast, M., Shetty, P., Chopra, R., Doyle, J. J., Sathyanarayana, N., and Egan, A. N. (2016). Transcriptome sequencing and marker development in winged bean (Psophocarpus tetragonolobus; Leguminosae). Scientific reports 6, 29070.
Waluyo, S. H., and Lie, T. A. (2016). Effect of phosphate on nodule primordia of soybean (Glycine max Merrill) in acid soils in rhizotron experiments. Indonesian Journal of Agricultural Science 5, 37-44.
Wong, Q. N., Tanzi, A. S., Ho, W. K., Malla, S., Blythe, M., Karunaratne, A., Massawe, F., and Mayes, S. (2017). Development of gene?based SSR markers in winged bean (Psophocarpus tetragonolobus (L.) DC.) for diversity assessment. Genes 8, 100.
Yoneyama, T. (2017). The 1981–2000 studies of 13C/12C and 15N/14N discrimination in the metabolism of higher plants, and the progress since then. Radioisotopes 66, 367-382.