Construction of an ultra-high-density consensus genetic map and analysis of recombination rate variation in Sorghum bicolor

##plugins.themes.bootstrap3.article.main##

RIZKY DWI SATRIO
https://orcid.org/0000-0003-1716-2076
ISNA AROFATUN NIKMAH
MIFTAHUL HUDA FENDIYANTO
MENTARI PUTRI PRATAMI
MO AWWANAH
NASTITI INTAN PERMATA SARI
NADYA FARAH
NURHADIYANTA

Abstract

Abstract. Satrio RD, Nikmah IA, Fendiyanto MH, Pratami MP, Awwanah M, Sari NIP, Farah N, Nurhadiyanta. 2022. Construction of an ultra-high-density consensus genetic map and analysis of recombination rate variation in Sorghum bicolor. Asian J Agric 6: 47-54. Sorghum is one of the most widely grown cereal crops on a global scale. A consensus map is a method for combining genetic information from multiple populations, and it is an effective way to increase genome coverage and marker density. This study constructed a consensus map by combining publicly available marker data from four mapping populations. A total of 3,449 non-redundant polymorphic markers at the nucleotide level were used to construct a single consensus map on ten sorghum chromosomes. This study generated an ultra-high-density sorghum consensus map consisting of many markers spanning 1,571.68 cM and averaging one marker per 0.46 cM. Due to the markers' high density, only 0.06% of the markers had an interval greater than 5 cM. The local recombination rates were estimated using a set of all markers' genetic and physical positions along each of the ten chromosomes. The analysis of the recombination rate on ten sorghum chromosomes revealed that it decreased as the centromere position was getting closer. The consensus map generated in this study can be used to integrate information related to sorghum genetic resources and QTLs into the genome sequence, thereby accelerating the discovery of novel potential genes in sorghum.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215: 403-410. DOI: 10.1016/S0022-2836(05)80360-2.
Apuli RP, Bernhardsson C, Schiffthaler B, Robinson KM, Jansson S, Street NR, Ingvarsson PK. 2020. Inferring the genomic landscape of recombination rate variation in European aspen (Populus tremula). G3 (Bethesda) 10: 299-309. DOI: 10.1534/g3.119.400504.
Bernardino KC, de Menezes CB, de Sousa SM, Guimarães CT, Carneiro PCS, Schaffert RE, Kochian L V, Hufnagel B, Pastina MM, Magalhaes J V. 2021. Association mapping and genomic selection for sorghum adaptation to tropical soils of Brazil in a sorghum multiparental random mating population. Theor Appl Genet 134: 295-312. DOI: 10.1007/s00122-020-03697-8.
Bernardino KC, Pastina MM, Menezes CB, de Sousa SM, Maciel LS, Carvalho GJ, Guimarães CT, Barros BA, da Costa E Silva L, Carneiro PCS, Schaffert RE, Kochian L V, Magalhaes J V. 2019. The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil. BMC Plant Biol 19: 87. DOI: 10.1186/s12870-019-1689-y.
Bouchet S, Olatoye MO, Marla SR, Perumal R, Tesso T, Yu J, Tuinstra M, Morris GP. 2017. Increased power to dissect adaptive traits in global sorghum diversity using a nested association mapping population. Genetics 206: 573-585. DOI: 10.1534/genetics.116.198499.
Bouchet S, Pot D, Deu M, Rami J-F, Billot C, Perrier X, Rivallan R, Gardes L, Xia L, Wenzl P, Kilian A, Glaszmann J-C. 2012. Genetic structure, linkage disequilibrium and signature of selection in Sorghum: Lessons from physically anchored DArT markers. PLoS One 7: e33470. DOI: 10.1371/journal.pone.0033470.
Choi K, Henderson IR. 2015. Meiotic recombination hotspots – a comparative view. Plant J 83: 52-61. DOI: 10.1111/tpj.12870.
Cooper EA, Brenton ZW, Flinn BS, Jenkins J, Shu S, Flowers D, Luo F, Wang Y, Xia P, Barry K, Daum C, Lipzen A, Yoshinaga Y, Schmutz J, Saski C, Vermerris W, Kresovich S. 2019. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: Implications for the genetics of sugar metabolism. BMC Genom 20: 420. DOI: 10.1186/s12864-019-5734-x.
Danan S, Veyrieras JB, Lefebvre V. 2011. Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11 (1): 16. DOI: 10.1186/1471-2229-11-16.
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6: 1-10. DOI: 10.1371/journal.pone.0019379.
Endelman JB, Plomion C. 2014. LPmerge: An R package for merging genetic maps by linear programming. Bioinformatics 30: 1623-1624. DOI: 10.1093/bioinformatics/btu091.
Evans J, McCormick RF, Morishige D, Olson SN, Weers B, Hilley J, Klein P, Rooney W, Mullet J. 2013. Extensive variation in the density and distribution of DNA polymorphism in sorghum genomes. PLoS One 8: e79192. DOI: 10.1371/journal.pone.0079192.
FAOSTAT. 2021. UN Food and Agriculture Organization Statistics [Online]. (accessed October 25, 2021).
Fendiyanto MH, Satrio RD, Darmadi D. 2020. Metabolic profiling and pathway analysis in red arillus of Salacca sumatrana demonstrate significant pyruvate, sulfur, and fatty acid metabolisms. Biodiversitas 21: 4361-4368. DOI: 10.13057/biodiv/d210955.
Fendiyanto MH, Satrio RD, Pratami MP, Nikmah IA, Sari NIP, Widana IDKK, Darmadi D. 2021a. Analysis of superoxide dismutase (OsSOD) gene expression using qRT-PCR, its morphophysiological characters and path analysis in rice variety IR64 under aluminum stress. Intl J Agric Biol 26: 546-554. DOI: 10.17957/IJAB/15.1866.
Fendiyanto MH, Satrio RD, Suharsono, Tjahjoleksono A, Hanarida I, Miftahudin. 2019a. QTL for aluminum tolerance on rice chromosome 3 based on root length characters. Sabrao J Breed Genet 51: 451-469.
Fendiyanto MH, Satrio RD, Suharsono, Tjahjoleksono A, Miftahudin. 2019b. Correlation among Snpb11 markers, root growth, and physiological characters of upland rice under aluminum stress. Biodiversitas 20: 1243-1254. DOI: 10.13057/biodiv/d200514.
Fendiyanto MH, Satrio RD, Widana IDKK, Pratami MP, Nikmah IA, Darmadi D. 2021b. Differential hierarchical metabolites expression of red/white Salacca sumatrana arillus and its molecular docking studies. Biodiversitas 22: 1014-1024. DOI: 10.13057/biodiv/d220258.
Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mézard C. 2011. Genome-wide crossover distribution in Arabidopsis thaliana meiosis reveals sex-specific patterns along chromosomes. PLoS Genet 7: e1002354. DOI: 10.1371/journal.pgen.1002354.
Girma G, Nida H, Seyoum A, Mekonen M, Nega A, Lule D, Dessalegn K, Bekele A, Gebreyohannes A, Adeyanju A, Tirfessa A, Ayana G, Taddese T, Mekbib F, Belete K, Tesso T, Ejeta G, Mengiste T. 2019. A large-scale genome-wide association analyses of Ethiopian sorghum landrace collection reveal loci associated with important traits. Front Plant Sci 10: 691. DOI: 10.3389/fpls.2019.00691.
Harris K, Subudhi PK, Borrell A, Jordan D, Rosenow D, Nguyen H, Klein P, Klein R, Mullet J. 2007. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58: 327-338. DOI: 10.1093/jxb/erl225.
He L, Dooner HK. 2009. Haplotype structure strongly affects recombination in a maize genetic interval polymorphic for Helitron and retrotransposon insertions. Proc Natl Acad Sci USA 106: 8410-8416. DOI: 10.1073/pnas.0902972106.
Hu X, Zhang Y, Zhang J, Islam S, She M, Zhao Y, Tang G, Jiang Y, Rong J, Ma W. 2021. Consensus genetic linkage map construction based on one common parental line for QTL mapping in wheat. Agronomy 11 (2): 227. DOI: 10.3390/agronomy11020227.
Hufnagel B, Guimaraes CT, Craft EJ, Shaff JE, Schaffert RE, Kochian L V, Magalhaes JV. 2018. Exploiting sorghum genetic diversity for enhanced aluminum tolerance: Allele mining based on the Alt(SB) locus. Sci Rep 8: 10094. DOI: 10.1038/s41598-018-27817-z.
Ji G, Zhang Q, Du R, LV P, Ma X, Fan S, Li S, Hou S, Han Y, Liu G. 2017. Construction of a high-density genetic map using specific-locus amplified fragments in sorghum. BMC Genom 18: 1-10. DOI: 10.1186/s12864-016-3430-7.
Khowaja FS, Price AH. 2008. QTL mapping rolling, stomatal conductance and dimension traits of excised leaves in the Bala × Azucena recombinant inbred population of rice. F Crop Res 106: 248-257. DOI: 10.1016/j.fcr.2007.12.008.
Kong WQ, Kim C, Zhang D, Guo H, Tan X, Jin H, Zhou C, Shuang LS, Goff V, Sezen U, Pierce G, Compton R, Lemke C, Robertson J, Rainville L, Auckland S, Paterson AH. 2018. Genotyping by sequencing of 393 Sorghum bicolor BTx623 × IS3620C recombinant inbred lines improves sensitivity and resolution of QTL detection. G3 (Bethesda) 8: 2563-2572. DOI: 10.1534/g3.118.200173.
Lambing C, Franklin FCH, Wang CJR. 2017. Understanding and manipulating meiotic recombination in plants. Plant Physiol 173: 1530-1542. DOI: 10.1104/pp.16.01530.
Leff B, Ramankutty N, Foley JA. 2004. Geographic distribution of major crops across the world. Glob Biogeochem Cycles 18: GB1009. DOI: 10.1029/2003GB002108.
Lopez JR, Erickson JE, Munoz P, Saballos A, Felderhoff TJ, Vermerris W. 2017. QTLs associated with crown root angle, stomatal conductance, and maturity in sorghum. Plant Genom 10: 1-12. DOI: 10.3835/plantgenome2016.04.0038.
Mace E, Innes D, Hunt C, Wang X, Tao Y, Baxter J, Hassall M, Hathorn A, Jordan D. 2019. The sorghum QTL atlas: A powerful tool for trait dissection, comparative genomics and crop improvement. Theor Appl Genet 132: 751-766. DOI: 10.1007/s00122-018-3212-5.
Mace ES, Rami J-F, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR. 2009. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9: 13. DOI: 10.1186/1471-2229-9-13.
McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, Kennedy M, Amirebrahimi M, Weers BD, McKinley B, Mattison A, Morishige DT, Grimwood J, Schmutz J, Mullet JE. 2018. The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J 93: 338-354. DOI: 10.1111/tpj.13781.
Mester D, Ronin Y, Schnable P, Aluru S, Korol A. 2015. Fast and accurate construction of ultra-dense consensus genetic maps using evolution strategy optimization. PLoS One 10: 1-16. DOI: 10.1371/journal.pone.0122485.
Miftahudin, Fendiyanto MH, Satrio RD, Turhadi, Chikmawati T. 2021a. Genomic improvement of rice for drought, aluminum, and iron toxicity stress tolerance. In: Kole C (eds). Genomic Designing for Abiotic Stress Resistant Cereal Crops. Springer International Publishing, Cham. DOI: 10.1007/978-3-030-75875-2_1.
Miftahudin M, Roslim DI, Fendiyanto MH, Satrio RD, Zulkifli A, Umaiyah EI, Chikmawati T, Sulistyaningsih YC, Suharsono S, Hartana A, Nguyen HT, Gustafson JP. 2021b. OsGERLP: A novel aluminum tolerance rice gene isolated from a local cultivar in Indonesia. Plant Physiol Biochem 162: 86-99. DOI: 10.1016/j.plaphy.2021.02.019.
Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S. 2013. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110: 453-458. DOI: 10.1073/pnas.1215985110.
Nadeem MA, Nawaz MA, Shahid MQ, Do?an Y, Comertpay G, Y?ld?z M, Hatipo?lu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. 2018. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32: 261-285. DOI: 10.1080/13102818.2017.1400401.
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev I V, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboob-ur-Rahman, Ware D, Westhoff P, Mayer KFX, Messing J, Rokhsar DS. 2009. The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551-556. DOI: 10.1038/nature07723.
Pennisi E. 2017. New technologies boost genome quality. Science 357: 10-11. DOI: 10.1126/science.357.6346.10.
Phuong N, Afolayan G, Stützel H, Uptmoor R, El-Soda M. 2019. Unraveling the genetic complexity underlying sorghum response to water availability. PLoS One 14: 1-15. DOI: 10.1371/journal.pone.0215515.
Qu P, Wang J, Wen W, Gao F, Liu J, Xia X, Peng H, Zhang L. 2021. Construction of consensus genetic map with applications in gene mapping of wheat (Triticum aestivum L.) using 90K SNP array. Front Plant Sci 12: 727077. DOI: 10.3389/fpls.2021.727077.
Ratnadewi D, Fendiyanto MH, Satrio RD, Miftahudin M, Laily AN. 2021. Strictosidine synthase coding gene expression towards quinine biosynthesis and accumulation: Inconsistency in cultured cells and fresh tissues of Cinchona ledgeriana. Intl J Agric Biol 26: 131-138. DOI: 10.17957/IJAB/15.1817.
Rezvoy C, Charif D, Guéguen L, Marais GAB. 2007. MareyMap: An R-based tool with graphical interface for estimating recombination rates. Bioinformatics 23: 2188-2189. DOI: 10.1093/bioinformatics/btm315.
Ruperao P, Thirunavukkarasu N, Gandham P, Selvanayagam S, Govindaraj M, Nebie B, Manyasa E, Gupta R, Das RR, Odeny DA, Gandhi H, Edwards D, Deshpande SP, Rathore A. 2021. Sorghum pan-genome explores the functional utility for genomic-assisted breeding to accelerate the genetic gain. Front Plant Sci 12: 666342. DOI: 10.3389/fpls.2021.666342.
Satrio RD, Fendiyanto MH, Supena EDJ, Suharsono, Miftahudin. 2019. Identification of drought-responsive regulatory genes by hierarchical selection of expressed sequence tags and their expression under drought stress in rice. Intl J Agric Biol 22: 1524-1532. DOI: 10.17957/IJAB/15.1230.
Satrio RD, Fendiyanto MH, Supena EDJ, Suharsono S, Miftahudin M. 2021. Genome-wide SNP discovery, linkage mapping, and analysis of QTL for morpho-physiological traits in rice during vegetative stage under drought stress. Physiol Mol Biol Plants 27: 2635-2650: DOI: 10.1007/s12298-021-01095-y.
Sedgwick P. 2014. Spearman’s rank correlation coefficient. BMJ 349: g7327. DOI: 10.1136/bmj.g7327.
Shen C, Li X, Zhang R, Lin Z. 2017. Genome-wide recombination rate variation in a recombination map of cotton. PLoS One 12: 1-15. DOI: 10.1371/journal.pone.0188682.
Silva-Junior OB, Grattapaglia D. 2015. Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis. New Phytol 208: 830-845. DOI: 10.1111/nph.13505.
Slavov GT, DiFazio SP, Martin J, Schackwitz W, Muchero W, Rodgers-Melnick E, Lipphardt MF, Pennacchio CP, Hellsten U, Pennacchio LA, Gunter LE, Ranjan P, Vining K, Pomraning KR, Wilhelm LJ, Pellegrini M, Mockler TC, Freitag M, Geraldes A, El-Kassaby YA, Mansfield SD, Cronk QCB, Douglas CJ, Strauss SH, Rokhsar D, Tuskan GA. 2012. Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa. New Phytol 196: 713-725. DOI: 10.1111/j.1469-8137.2012.04258.x.
Stapley J, Feulner PGD, Johnston SE, Santure AW, Smadja CM. 2017. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc B Biol Sci 372: 20160455. DOI: 10.1098/rstb.2016.0455.
Talbert PB, Henikoff S. 2010. Centromeres convert but don’t cross. PLoS Biol 8: e1000326. DOI: 10.1371/journal.pbio.1000326.