Review: The potential of agroforestry in South Asian countries towards achieving the climate goals

##plugins.themes.bootstrap3.article.main##

ASIF RAIHAN

Abstract

Abstract. Raihan A. 2024. Review: The potential of agroforestry in South Asian countries towards achieving the climate goals. Asian J For 8: 1-17. Throughout history, millions of South Asian smallholder farmers have relied on traditional agroforestry techniques. Since last two decades, agroforestry's potential as a carbon sink has been debated in international climate negotiations. Greenhouse Gases (GHGs) offsetting, livelihood provision, Sustainable Development Goals (SDGs) localization, and achievements towards biodiversity conservation are the areas in which agroforestry plays a pivotal role. This paper reviews the benefits of agroforestry practices to human wellbeing and assesses their contribution on adaptation and mitigation of climate change in South Asian countries. This research delves into the factors that can help or hinder the mainstream adoption of agroforestry systems, which could be used to achieve international goals for reducing consequences of global warming. The South Asian countries who have joined hands in the Nationally Determined Contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC) recognize the value of agroforestry systems in mitigating global warming. A major enabling condition for ensuring the efficacy of employing agroforestry to achieve climate targets was established in 2016 with the adoption of the South Asian Association for Regional Cooperation (SAARC) resolution on agroforestry by all regional governments. One of the main obstacles to effectively monitoring plant and soil carbon stocks is the lack of standardized approaches to database building. Other challenges that should be properly addressed by nations in the region in order to enhance their capacities to accomplish national climate ambitions include water shortages, inadequate governance through interaction, property rights for farmers, legal protections complications, and inadequate financial assistance to small-scale farmers for agroforestry. Strong examples were provided from Nepal and India, encompassing sustainable local economies, carbon-free futures, and financial incentives, all of which point to the need to move from planning to implementation to improve readiness.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Ahmad F, Uddin MM, Goparaju L, Rizvi J, Biradar C. 2020. Quantification of the land potential for scaling agroforestry in South Asia. KN-J Cartogr Geogr Inf 70 (2): 71-89. DOI: 10.1007/s42489-020-00045-0.
Ahmad S, Xu H, Ekanayake EMBP. 2023. Socioeconomic determinants and perceptions of smallholder farmers towards agroforestry adoption in Northern Irrigated Plain, Pakistan. Land 12 (4): 813. DOI: 10.3390/land12040813.
Aich A, Dey D, Id AR. 2022. Climate change resilient agricultural practices: A learning experience from indigenous communities over India. PLOS Sustain Transform 1 (7): e0000022. DOI: 10.1371/journal.pstr.0000022.
Ali AZ, Rahman MS, Raihan A. 2022. Soil carbon sequestration in agroforestry systems as a mitigation strategy of climate change: A case study from Dinajpur, Bangladesh. Adv Env Eng Res 3 (4): 1-15. DOI: 10.21926/aeer.2204056.
Ambele CF, Bisseleua HD, Djuideu CT, Akutse KS. 2023. Managing insect services and disservices in cocoa agroforestry systems. Agrofor Sys 97: 965-984. DOI: 10.1007/s10457-023-00839-x.
Amer L, Erkoc M, Feagin RA, Kameshwar S, Mach KJ, Mitsova D. 2023. Measuring resilience to sea-level rise for critical infrastructure systems: Leveraging leading indicators. J Mar Sci Eng 11 (7): 1421. DOI: 10.3390/jmse11071421.
Atangana A, Khasa D, Chang S, Degrande A, Atangana A, Khasa D, Degrande A. 2014. Agroforestry and the carbon market in the tropics. In: Atangana A, Khasa D, Chang S, Degrande A (eds). Tropical agroforestry, Springer, Dordrecht, The Netherlands. DOI: 10.1007/978-94-007-7723-1.
Bacon CM, Flores Gomez ME, Shin V, Ballardo G, Kriese S, McCurry E, Rivas M. 2023. Beyond the bean: Analyzing diversified farming, food security, dietary diversity, and gender in Nicaragua’s smallholders coffee cooperatives. Agroecol Sustain Food Syst 47 (4): 579-620. DOI: 10.1080/21683565.2023.2171172.
Baig MB, Burgess PJ, Fike JH. 2021. Agroforestry for healthy ecosystems: Constraints, improvement strategies and extension in Pakistan. Agroforest Syst 95: 995-1013. DOI: 10.1007/s10457-019-00467-4.
Baldwin C, Hamerlinck J, McKinlay A. 2023. Institutional support for building resilience within rural communities characterised by multifunctional land use. Land Use Policy 132: 106808. DOI: 10.1016/j.landusepol.2023.106808.
Basnet S, Karki BS. 2020. REDD+ across transboundary landscapes: A look into the opportunities and challenges of participatory forest management systems in receiving results based payments in the Hindu Kush Himalayan Region. Small-scale For 19: 399-418. DOI: 10.1007/s11842-020-09448-3.
Basu JP. 2014. Agroforestry, climate change mitigation and livelihood security in India. N Z J For Sci 44: 1-10. DOI: 10.1186/1179-5395-44-S1-S11.
Baul TK, Peuly TA, Nandi R, Schmidt LH, Karmakar S. 2021. Carbon stocks of homestead forests have a mitigation potential to climate change in Bangladesh. Sci Rep 11 (1): 9254. DOI: 10.1038/s41598-021-88775-7.
Beal T, Gardner CD, Herrero M, Iannotti LL, Merbold L, Nordhagen S, Mottet A. 2023. Friend or foe? The role of animal-source foods in healthy and environmentally sustainable diets. J Nutr 153: 409-425. DOI: 10.1016/j.tjnut.2022.10.016.
Begum RA, Raihan A, Said MNM. 2020. Dynamic impacts of economic growth and forested area on carbon dioxide emissions in Malaysia. Sustainability 12 (22): 9375. DOI: 10.3390/su12229375.
Beillouin D, Corbeels M, Demenois J, Berre D, Boyer A, Fallot A, Cardinael R. 2023. A global meta-analysis of soil organic carbon in the Anthropocene. Nat Commun 14 (1): 3700. DOI: 10.1038/s41467-023-39338-z.
Bernzen A, Sohns F, Jia Y, Braun B. 2023. Crop diversification as a household livelihood strategy under environmental stress. Factors contributing to the adoption of crop diversification in shrimp cultivation and agricultural crop farming zones of coastal Bangladesh. Land Use Policy 132: 106796. DOI: 10.1016/j.landusepol.2023.106796.
Bödeker K, Jordan-Fragstein C, Vor T, Ammer C, Knoke T. 2023. Abrupt height growth setbacks show overbrowsing of tree saplings, which can be reduced by raising deer harvest. Sci Rep 13 (1): 12021. DOI: 10.1038/s41598-023-38951-8.
Bongaarts J. 2019. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science?policy platform on biodiversity and ecosystem services. Popul Dev Rev 45 (3): 680-681. DOI: 10.1111/padr.12283.
Borah B, Bhattacharjee A, Ishwar NM. 2018. Bonn Challenge and India: Progress on Restoration Efforts Across States and Landscapes. IUCN and MoEFCC, Government of India, New Delhi, India. IUCN and MoEFCC, Government of India. DOI: 10.2305/IUCN.CH.2018.12.en.
Bose P. 2015. India's drylands agroforestry: A ten-year analysis of gender and social diversity, tenure and climate variability. Intl For Rev 17 (4): 85-98. DOI: 10.1505/146554815816086435.
CAFRI. 2022. All india coordinated research project on agroforestry, Central Agroforestry Research Institute (CAFRI), Jhansi, Uttar Pradesh, India. Available at https://cafri.icar.gov.in/all-india-co-ordinated-research-project-on-agroforestry, accessed on 08.09.2023.
Carbutt C, Kirkman K. 2022. Ecological grassland restoration A South African perspective. Land 11 (4): 575. DOI: 10.3390/land11040575.
Caretta MA, Fanghella V, Rittelmeyer P, Srinivasan J, Panday PK, Parajuli J, Mukherji A. 2023. Migration as adaptation to freshwater and inland hydroclimatic changes? A meta-review of existing evidence. Clim Change 176 (8): 100. DOI: 10.1007/s10584-023-03573-6.
Castro P, Azul AM, Filho WL, Azeiteiro UM. 2019. Climate Change-Resilient Agriculture and Agroforestry. Springer Cham, Suisse. DOI: 10.1007/978-3-319-75004-0.
Cechin A, da Silva Araújo V, Amand L. 2021. Exploring the synergy between Community Supported Agriculture and agroforestry: Institutional innovation from smallholders in a brazilian rural settlement. J Rural Stud 81: 246-258. DOI: 10.1016/j.jrurstud.2020.10.031.
Cedamon ED, Nuberg I, Mulia R, Lusiana B, Subedi YR, Shrestha KK. 2019. Contribution of integrated forest-farm system on household food security in the mid-hills of Nepal: assessment with EnLiFT model. Aust For 82: 32-44. DOI: 10.1080/00049158.2019.1610212.
Chakraborty M, Haider MZ, Rahaman MM. 2015. Socio-economic impact of cropland agroforestry: Evidence from Jessore district of Bangladesh. Intl J Res Agric For 2 (1): 11-20.
Chavan SB, Dhillon RS, Rizvi RH, Sirohi C, Handa AK, Kumari S. 2022. Estimating biomass production and carbon sequestration of poplar-based agroforestry systems in India. Env Dev Sustain 24: 13493-13521. DOI: 10.1007/s10668-021-01996-8.
Chavan SB, Dhillon RS, Sirohi C, Uthappa AR, Jinger D, Jatav HS, Rajput VD. 2023. Carbon Sequestration Potential of Commercial Agroforestry Systems in Indo-Gangetic Plains of India: Poplar and Eucalyptus Based Agroforestry Systems. Forests 14 (3): 559. DOI: 10.3390/f14030559.
Cialdella N, Jacobson M, Penot E. 2023. Economics of agroforestry: Links between nature and society. Agrofor Syst 97 (3): 273-277. DOI: 10.1007/s10457-023-00829-z.
Critchley W, Harari N, Mollee E, Mekdaschi-Studer R, Eichenberger J. 2023. Sustainable land management and climate change adaptation for small-scale land users in Sub-Saharan Africa. Land 12 (6): 1206. DOI: 10.3390/land12061206.
Dagar JC, Singh AK, Arunachalam A. 2014. Agroforestry Systems in India: Livelihood Security & Ecosystem Services. Springer Science+Business Media, Germany. DOI: 10.1007/978-81-322-1662-9.
Darge A, Haji J, Beyene F, Ketema M. 2023. Smallholder farmers’ climate change adaptation strategies in the Ethiopian Rift Valley: The case of home garden agroforestry systems in the Gedeo Zone. Sustainability 15 (11): 8997. DOI: 10.3390/su15118997.
Darjee KB, Sunam RK, Köhl M, Neupane PR. 2021. Do national policies translate into local actions? Analyzing coherence between climate change adaptation policies and implications for local adaptation in Nepal. Sustainability 13 (23): 13115. DOI: 10.3390/su132313115.
Das A, Yadav GS, Layek J, Lal R, Meena RS, Babu S, Ghosh PK. 2020. Carbon management in diverse land-use systems of Eastern Himalayan Subtropics. In: Ghosh P, Mahanta S, Mandal D, Mandal B, Ramakrishnan S (eds). Carbon Management in Tropical and Sub-Tropical Terrestrial Systems. Springer, Singapore. DOI: 10.1007/978-981-13-9628-1_8.
De Zoysa M, Inoue M. 2016. Climate change and community forestry in Sri Lanka: Policy adoption, popular participation, climate adaptation and rural development. Intl J Agric for Plant 2: 240-251.
Dev I, Ram A, Bhaskar S, Chaturvedi OP 2019. Role of agroforestry in current scenario. In: Dev I, Ram A, Kumar N, Singh R, Kumar D, Uthappa AR, Handa AK, Chaturvedi OP (eds). Agroforestry in Climate Resilience and Rural Livelihood. Scientific Publishers, Jodhpur, India.
Dhakal A, Rai RK. 2020. Who adopts agroforestry in a subsistence economy? Lessons from the Terai of Nepal. Forests 11 (5): 565. DOI: 10.3390/f11050565.
Dinesha S, Hosur SR, Toushif PK, Bodiga D, Dechamma NLD, Ashwath MN, Pradhan D. 2023. Sustaino?resilient agroforestry for climate resilience, food security and land degradation neutrality. In: Raj A, Jhariya MK, Banerjee A, Nema S, Bargali K (eds). Land and Environmental Management through Forestry. Scrivener Publishing LLC, US. DOI: 10.1002/9781119910527.ch9.
Dissanayaka DMNS, Dissanayake DKRPL, Udumann SS, Nuwarapaksha TD, Atapattu AJ. 2023. Agroforestry-A key tool in the climate-smart agriculture context: A review on coconut cultivation in Sri Lanka. Front Agron 5: 1162750. DOI: 10.3389/fagro.2023.1162750.
Duffy C, Toth GG, Hagan RP, McKeown PC, Rahman SA, Widyaningsih Y, Spillane C. 2021. Agroforestry contributions to smallholder farmer food security in Indonesia. Agrofor Syst 95 (6): 1109-1124. DOI: 10.1007/s10457-021-00632-8.
Duguma L, Nzyoka J, Minang P, Bernard F. 2017. How Agroforestry Propels Achievement of Nationally Determined Contributions. World Agroforestry Centre, Nairobi, Kenya.
Dutta AK, Pradhan P, Basu SK, Acharya K. 2013. Macrofungal diversityand ecology of the mangrove ecosystem in the Indian part of Sundarbans. Biodiversity 14 (4): 196-206. DOI: 10.1080/14888386.2013.848824.
Evans-Agnew RA, Aguilera J. 2023. Climate justice is environmental justice: System change for promoting planetary health and a just transition from extractive to regenerative action. Health Promot Pract 24 (4): 597-602. DOI: 10.1177/15248399231171950.
Eydivandi S, Roudbar MA, Karimi MO, Sahana G. 2021. Genomic scans for selective sweeps through haplotype homozygosity and allelic fixation in 14 indigenous sheep breeds from Middle East and South Asia. Sci Rep 11 (1): 2834. DOI: 10.1038/s41598-021-82625-2.
Fagan ME, Reid JL, Holland MB, Drew JG, Zahawi RA. 2020. How feasible are global forest restoration commitments? Conserv Lett 13 (3): e12700. DOI: 10.1111/conl.12700.
Feliciano D, Ledo A, Hillier J, Nayak DR. 2018. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Env 254: 117-129. DOI: 10.1016/j.agee.2017.11.032.
Fortuna S, Tjarvar A, Borelli S, Simelton E. 2019. Agroforestry in REDD+ and NDCs Ways to Fulfill the Paris Agreement and Reduce Deforestation. In Proceedings of the 4th World Congress on Agroforestry, Montpellier, France.
Getnet D, Mekonnen Z, Ajulo A. 2023. The potential of traditional agroforestry practices as nature-based carbon sinks in Ethiopia. Nat Based Solut 4: 100079. DOI: 10.1016/j.nbsj.2023.100079.
Ghosh S, Hossain MS, Voumik LC, Raihan A, Ridzuan AR, Esquivias MA. 2023. Unveiling the spillover effects of democracy and renewable energy consumption on the environmental quality of BRICS countries: A new insight from different quantile regression approaches. Renew Energy Focus 46: 222-235. DOI: 10.1016/j.ref.2023.06.004.
Gupta SR, Dagar JC, Sileshi GW, Chaturvedi RK. 2023. Agroforestry for climate change resilience in degraded landscapes. In: Dagar JC, Gupta SR, Sileshi GW (eds). Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa. Springer, Singapore. DOI: 10.1007/978-981-19-4602-8_5.
Han Y, Zhang Z, Li T, Chen P, Nie T, Zhang Z, Du S. 2023. Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation. Agric Water Manag 287: 108434. DOI: 10.1016/j.agwat.2023.108434.
Handa AK, Sirohi C, Arunachalam A, Chavan SB. 2020. Agroforestry interventions for carbon sequestration and improving degraded lands. Clim Change Env Sustain 8 (1): 3-12. DOI: 10.5958/2320-642X.2020.00001.0.
Harmon ME, Fasth BG, Yatskov M, Kastendick D, Rock J, Woodall CW. 2020. Release of coarse woody detritus-related carbon: A synthesis across forest biomes. Carbon Balance Manag 15 (1): 1-21. DOI: 10.1186/s13021-019-0136-6.
Hastings Z, Ticktin T, Wong M, Kukea-Shultz JK, Bremer LL. 2023. Non-native fallows hold high potential for restoration through agroforestry in a Pacific Island ecosystem. Agric Ecosyst Env 342: 108214. DOI: 10.1016/j.agee.2022.108214.
He J, Li Z, Zhang X, Wang H, Dong W, Chang S, Zhao X. 2020. Comprehensive report on China's long-term low-carbon development strategies and pathways. Chin J Popul Resour Env 18 (4): 263. DOI: 10.1016/j.cjpre.2021.04.004.
Holmes I, Kirby KR, Potvin C. 2017. Agroforestry within REDD+: experiences of an indigenous Emberá community in Panama. Agrofor Syst 91: 1181-1197. DOI: 10.1007/s10457-016-0003-3.
IPCC. 2019. Summary for Policymakers. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. IPCC Press Office: Geneva, Switzerland.
IPCC. 2022. Climate Change 2022: Mitigation of Climate Change, the Working Group III contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, New York, USA.
Isfat M, Raihan A. 2022. Current practices, challenges, and future directions of climate change adaptation in Bangladesh. Intl J Res Pub Rev 35: 3429-3437.
ISFR. 2019. India State of Forest Report (ISFR), 2019. Ministry of Environment, Forest & Climate Change, Government of India. Available at https://static.pib.gov.in/WriteReadData/userfiles/ISFR2019%20Vol-I.pdf, accessed on 08.09.2023.
Jaafar WSWM, Maulud KNA, Kamarulzaman AMM, Raihan A, Sah SM, Ahmad A, Saad SNM, Azmi ATM, Syukri NKAJ, Khan WR. 2020. The influence of forest degradation on land surface temperature – A case study of Perak and Kedah, Malaysia. Forests 11 (6): 670. DOI: 10.3390/f11060670.
Jat ML, Chakraborty D, Ladha JK, Rana DS, Gathala MK, McDonald A, Gerard B. 2020. Conservation agriculture for sustainable intensification in South Asia. Nat Sustain 3 (4): 336-343. DOI: 10.1038/s41893-020-0500-2.
Johnson D, Parsons M, Fisher K. 2023. Adaptation at whose expense? Explicating the maladaptive potential of water storage and climate-resilient growth for M?ori women in northern Aotearoa. Glob Env Change 82: 102733. DOI: 10.1016/j.gloenvcha.2023.102733.
Karada MS, Bajpai R, Singh M, Singh AK, Agnihotri D, Singh BK. 2023. A review on advances in agriculture and agroforestry with GPS and GIS. Intl J Plant Soil Sci 35 (6): 150-160. DOI: 10.9734/IJPSS/2023/v35i62849.
Kasuya Y, Reilly B. 2023. The shift to consensus democracy and limits of institutional design in Asia. Pac Rev 36 (4): 844-870. DOI: 10.1080/09512748.2022.2035426.
Katayi AL, Kafuti C, Kipute DD, Mapenzi N, Nshimba HS, Mampeta SW. 2023. Factors inciting agroforestry adoption based on trees outside forest in Biosphere Reserve of Yangambi landscape (Democratic Republic of the Congo). Agrofor Syst 97: 1157-1168. DOI: 10.1007/s10457-023-00854-y.
Kattumuri R, Ravindranath D, Esteves T. 2017. Local adaptation strategies in semi-arid regions: study of two villages in Karnataka, India. Clim Dev 9 (1): 36-49. DOI: 10.1080/17565529.2015.1067179.
Khatri-Chhetri A, Junior CC, Wollenberg E. 2022. Greenhouse gas mitigation co-benefits across the global agricultural development programs. Glob Env Change 76: 102586. DOI: 10.1016/j.gloenvcha.2022.102586.
Kirkland M, Atkinson PW, Pearce-Higgins JW, de Jong MC, Dowling TP, Grummo D, Ashton-Butt A. 2023. Landscape fires disproportionally affect high conservation value temperate peatlands, meadows, and deciduous forests, but only under low moisture conditions. Sci Total Env 884: 163849. DOI: 10.1016/j.scitotenv.2023.163849.
Koirala BS, Suberi B, Chhetri R, Gyeltshen T. 2023. Composition of stand and growth dynamics of black cardamom (Amomum subulatum) in different agroforestry habitats in Bhutan. J Multidiscip Appl Nat Sci 3 (2): 149-160. DOI: 10.47352/jmans.2774-3047.177.
Kok MT, Meijer JR, van Zeist WJ, Hilbers JP, Immovilli M, Janse JH, Alkemade R. 2023. Assessing ambitious nature conservation strategies in a below 2-degree and food-secure world. Biol Conserv 284: 110068. DOI: 10.1016/j.biocon.2023.110068.
Kos J, Ani? M, Radi? B, Zadravec M, Hajnal EJ, Pleadin J. 2023. Climate change-A global threat resulting in increasing mycotoxin occurrence. Foods 12 (14): 2704. DOI: 10.3390/foods12142704.
Kumar BM. 2023. Do carbon stocks and floristic diversity of tropical homegardens vary along an elevational gradient and based on holding size in central Kerala, India? Agrofor Syst 97 (5): 751-783. DOI: 10.1007/s10457-023-00821-7.
Kumar V. 2016. Multifunctional agroforestry systems in tropics region. Nat Env Pollut Technol 15 (2): 365.
Kumara K, Pal S, Chand P, Kandpal A. 2023. Carbon sequestration potential of agroforestry systems in Indian agricultural landscape: A Meta-Analysis. Ecosyst Serv 62: 101537. DOI: 10.1016/j.ecoser.2023.101537.
Kyriakopoulos GL, Sebos I. 2023. Enhancing climate neutrality and resilience through coordinated climate action: Review of the synergies between mitigation and adaptation actions. Climate 11 (5): 105. DOI: 10.3390/cli11050105.
Li M, Li H, Fu Q, Liu D, Yu L, Li T. 2021. Approach for optimizing the water-land-food-energy nexus in agroforestry systems under climate change. Agric Syst 192: 103201. DOI: 10.1016/j.agsy.2021.103201.
Litschel J, Berendt F, Wagner H, Heidenreich S, Bauer D, Welp M, Cremer T. 2023. Key actors’ perspectives on agroforestry’s potential in North Eastern Germany. Land 12 (2): 458. DOI: 10.3390/land12020458.
Lojka B, Teutscherová N, Chládová A, Kala L, Szabó P, Martiník A, Lawson G. 2021. Agroforestry in the Czech Republic: What hampers the comeback of a once traditional land use system? Agronomy 12 (1): 69. DOI: 10.3390/agronomy12010069.
Low S, Baum CM, Sovacool BK. 2022. Rethinking Net-Zero systems, spaces, and societies:“Hard” versus “soft” alternatives for nature-based and engineered carbon removal. Glob Env Change 75: 102530. DOI: 10.1016/j.gloenvcha.2022.102530.
Lowe WAM, Silva GLLP, Pushpakumara DKNG. 2022. Homegardens as a modern carbon storage: Assessment of tree diversity and above-ground biomass of homegardens in Matale district, Sri Lanka. Urban For Urban Greening 74: 127671. DOI: 10.1016/j.ufug.2022.127671.
Maharjan A, de Campos RS, Singh C, Das S, Srinivas A, Bhuiyan MRA, Vincent K. 2020. Migration and household adaptation in climate-sensitive hotspots in South Asia. Curr Clim Change Rep 6: 1-16. DOI: 10.1007/s40641-020-00153-z.
Mardero S, Schmook B, Calmé S, White RM, Chang JCJ, Casanova G, Castelar J. 2023. Traditional knowledge for climate change adaptation in Mesoamerica: A systematic review. Soc Sci Human Open 7 (1): 100473. DOI: 10.1016/j.ssaho.2023.100473.
Maryam M, Manzoor A. 2023. Exploring the commercial versatility of Moringa Oleifera: A valuable resource for diverse industries. Intl J Bot Hor Res 1 (1): 01-09.
Mbow C, Smith P, Skole D, Duguma L, Bustamante M. 2014. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Env Sustain 6: 8-14. DOI: 10.1016/j.cosust.2013.09.002.
Mele A, Paglialunga E, Sforna G. 2021. Climate cooperation from Kyoto to Paris: What can be learnt from the CDM experience? Soc Econ Plann Sci 75: 100942. DOI: 10.1016/j.seps.2020.100942.
Melvani K, Stacey N, Bristow M, Crase B, Moles J. 2022. Farmers’ values for land, trees and biodiversity underlie agricultural sustainability. Land Use Policy 117: 105688. DOI: 10.1016/j.landusepol.2021.105688.
Mulinge J. 2023. Effects of Environmental change on species diversity. Intl J Biol 3 (1): 43-53. DOI: 10.47604/ijb.2014.
Muschler RG. 2016. Agroforestry: Essential for sustainable and climate-smart land use? In Pancel L, Köhl M (eds). Tropical Forestry Handbook. Springer, Berlin/Heidelberg, Germany. DOI: 10.1007/978-3-642-54601-3_300.
Nair PKR, Kumar B, Nair VD. 2009. Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172 (1): 10-23. DOI: 10.1002/jpln.200800030.
Nair PKR, Viswanath S, Lubina PA. 2017. Cinderella agroforestry systems. Agrofor Syst 91: 901-917. DOI: 10.1007/s10457-016-9966-3.
Nath AJ, Sileshi GW, Laskar SY, Pathak K, Reang D, Nath A, Das AK. 2021. Quantifying carbon stocks and sequestration potential in agroforestry systems under divergent management scenarios relevant to India’s nationally determined contribution. J Clean Prod 281: 124831. DOI: 10.1016/j.jclepro.2020.124831.
Nguyen TT, Grote U, Neubacher F, Do MH, Paudel GP. 2023. Security risks from climate change and environmental degradation: Implications for sustainable land use transformation in the Global South. Curr Opin Env Sustain 63: 101322. DOI: 10.1016/j.cosust.2023.101322.
Nkonya E, Srinivasan R, Anderson W, Kato E. 2016. Economics of land degradation and improvement in Bhutan. In: Nkonya E, Mirzabaev A, von Braun J (eds). Economics of Land Degradation and Improvement–A Global Assessment for Sustainable Development. Springer International Publishing, Switzerland. DOI: 10.1007/978-3-319-19168-3.
Ntawuruhunga D, Ngowi EE, Mangi HO, Salanga RJ, Shikuku KM. 2023. Climate-smart agroforestry systems and practices: A systematic review of what works, what doesn't work, and why. For Policy Econ 150: 102937. DOI: 10.1016/j.forpol.2023.102937.
Nunes S, Gastauer M, Cavalcante RB, Ramos SJ, Caldeira Jr CF, Silva D, Siqueira JO. 2020. Challenges and opportunities for large-scale reforestation in the Eastern Amazon using native species. For Ecol Manag 466: 118120. DOI: 10.1016/j.foreco.2020.118120.
Oli BN, Treue T, Larsen HO. 2015. Socio-economic determinants of growing trees on farms in the middle hills of Nepal. Agrofor Syst 89: 765-777. DOI: 10.1007/s10457-015-9810-1.
Owusu R, Kimengsi JN, Moyo F. 2021. Community based Forest Landscape Restoration (FLR): Determinants and policy implications in Tanzania. Land Use Policy 109: 105664. DOI: 10.1016/j.landusepol.2021.105664.
Panwar P, Mahalingappa DG, Kaushal R, Bhardwaj DR, Chakravarty S, Shukla G, Gurung T. 2022. Biomass production and carbon sequestration potential of different agroforestry systems in India: A critical review. Forests 13 (8): 1274. DOI: 10.3390/f13081274.
Paradis E. 2021. Forest gains and losses in Southeast Asia over 27 years: The slow convergence towards reforestation. For Policy Econ 122: 102332. DOI: 10.1016/j.forpol.2020.102332.
Park MS, Baral H, Shin S. 2022. Systematic approach to agroforestry policies and practices in Asia. Forests 13 (5): 635. DOI: 10.3390/f13050635.
Paudel Y, Shrestha S. 2022. Agroforestry practices prevailing in SAARC countries: A review. Indones J Soc Env Issues 3 (1): 10-18. DOI: 10.47540/ijsei.v3i1.390.
Perosa B, Newton P, da Silva RFB. 2023. A monitoring, reporting and verification system for low carbon agriculture: A case study from Brazil. Env Sci Policy 140: 286-296. DOI: 10.1016/j.envsci.2022.12.006.
Potschin-Young M, Haines-Young R, Görg C, Heink U, Jax K, Schleyer C. 2018. Understanding the role of conceptual frameworks: Reading the ecosystem service cascade. Ecosyst Serv 29: 428-440. DOI: 10.1016/j.ecoser.2017.05.015.
Quandt A, Neufeldt H, Gorman K. 2023. Climate change adaptation through agroforestry: Opportunities and gaps. Curr Opin Environ Sustain 60: 101244. DOI: 10.1016/j.cosust.2022.101244.
Rabbi MF, Ben Hassen T, El Bilali H, Raheem D, Raposo A. 2023. Food security challenges in Europe in the context of the prolonged Russian–Ukrainian Conflict. Sustainability 15 (6): 4745. DOI: 10.3390/su15064745.
Rahman MS, Roy PR, Ali MM, Bari MS, Sarmin IJ, Rahman MA. 2020. Cost-benefit analysis of different agroforestry systems and practices of Kaharole Upazila of Dinajpur District, Bangladesh. South Asian J Soc Stud Econ 8 (4): 87-97. DOI: 10.9734/sajsse/2020/v8i430221.
Raihan A, Begum RA, Said MNM, Abdullah SMS. 2018. Climate change mitigation options in the forestry sector of Malaysia. J Kejuruteraan SI 1 (6): 89-98. DOI: 10.17576/jkukm-2018-si1(6)-11.
Raihan A, Begum RA, Said MNM, Abdullah SMS. 2019. A review of emission reduction potential and cost savings through forest carbon sequestration. Asian J Water Env Pollut 16 (3): 1-7. DOI: 10.3233/AJW190027.
Raihan A, Begum RA, Said MNM, Pereira JJ. 2021b. Assessment of carbon stock in forest biomass and emission reduction potential in Malaysia. Forests 12 (10): 1294. DOI: 10.3390/f12101294.
Raihan A, Begum RA, Said MNM, Pereira JJ. 2022a. Dynamic impacts of energy use, agricultural land expansion, and deforestation on CO2 emissions in Malaysia. Env Ecol Stat 29 (3): 477-507. DOI: 10.1007/s10651-022-00532-9.
Raihan A, Begum RA, Said MNM, Pereira JJ. 2022b. Relationship between economic growth, renewable energy use, technological innovation, and carbon emission towards achieving Malaysia’s Paris Agreement. Env Syst Decis 42 (4): 586-607. DOI: 10.1007/s10669-022-09848-0.
Raihan A, Begum RA, Said MNM. 2021a. A meta-analysis of the economic value of forest carbon stock. Geogr Malays J Soc Space 17 (4): 321-338. DOI: 10.17576/geo-2021-1704-22.
Raihan A, Farhana S, Muhtasim DA, Hasan MAU, Paul A, Faruk O. 2022c. The nexus between carbon emission, energy use, and health expenditure: Empirical evidence from Bangladesh. Carbon Res 1 (1): 30. DOI: 10.1007/s44246-022-00030-4.
Raihan A, Himu HA. 2023. Global impact of COVID-19 on the sustainability of livestock production. Glob Sustain Res 2 (2): 1-11. DOI: 10.56556/gssr.v2i2.447.
Raihan A, Ibrahim S, Muhtasim DA. 2023a. Dynamic impacts of economic growth, energy use, tourism, and agricultural productivity on carbon dioxide emissions in Egypt. World Dev Sustain 2: 100059. DOI: 10.1016/j.wds.2023.100059.
Raihan A, Muhtasim DA, Farhana S, Hasan MAU, Paul A, Faruk O. 2022e. Toward environmental sustainability: Nexus between tourism, economic growth, energy use and carbon emissions in Singapore. Glob Sustain Res 1 (2): 53-65. DOI: 10.56556/gssr.v1i2.408.
Raihan A, Muhtasim DA, Farhana S, Hasan MAU, Pavel MI, Faruk O, Rahman M, Mahmood A. 2022d. Nexus between economic growth, energy use, urbanization, agricultural productivity, and carbon dioxide emissions: new insights from Bangladesh. Energy Nexus 8: 100144. DOI: 10.1016/j.nexus.2022.100144.
Raihan A, Muhtasim DA, Farhana S, Hasan MAU, Pavel MI, Faruk O, Rahman M, Mahmood A. 2023b. An econometric analysis of Greenhouse gas emissions from different agricultural factors in Bangladesh. Energy Nexus 9: 100179. DOI: 10.1016/j.nexus.2023.100179.
Raihan A, Muhtasim DA, Farhana S, Pavel MI, Faruk O, Rahman M, Mahmood A. 2022f. Nexus between carbon emissions, economic growth, renewable energy use, urbanization, industrialization, technological innovation, and forest area towards achieving environmental sustainability in Bangladesh. Energy Clim Change 3: 100080. DOI: 10.1016/j.egycc.2022.100080.
Raihan A, Muhtasim DA, Farhana S, Rahman M, Hasan MAU, Paul A, Faruk O. 2023c. Dynamic linkages between environmental factors and carbon emissions in Thailand. Environ Process 10 (1): 5. DOI: 10.1007/s40710-023-00618-x.
Raihan A, Muhtasim DA, Khan MNA, Pavel MI, Faruk O. 2022i. Nexus between carbon emissions, economic growth, renewable energy use, and technological innovation towards achieving environmental sustainability in Bangladesh. Clean Energy Syst 3: 100032. DOI: 10.1016/j.cles.2022.100032.
Raihan A, Muhtasim DA, Pavel MI, Faruk O, Rahman M. 2022g. An econometric analysis of the potential emission reduction components in Indonesia. Clean Prod Lett 3: 100008. DOI: 10.1016/j.clpl.2022.100008.
Raihan A, Muhtasim DA, Pavel MI, Faruk O, Rahman M. 2022h. Dynamic impacts of economic growth, renewable energy use, urbanization, and tourism on carbon dioxide emissions in Argentina. Env Process 9 (2): 38. DOI: 10.1007/s40710-022-00590-y.
Raihan A, Pavel MI, Muhtasim DA, Farhana S, Faruk O, Paul A. 2023d. The role of renewable energy use, technological innovation, and forest cover toward green development: Evidence from Indonesia. Innov Green Dev 2: 100035. DOI: 10.1016/j.igd.2023.100035.
Raihan A, Pereira JJ, Begum RA, Rasiah R. 2023f. The economic impact of water supply disruption from the Selangor River, Malaysia. Blue-Green Syst 5 (2): 102-120. DOI: 10.2166/bgs.2023.031.
Raihan A, Rashid M, Voumik LC, Akter S, Esquivias MA. 2023g. The dynamic impacts of economic growth, financial globalization, fossil fuel energy, renewable energy, and urbanization on load capacity factor in Mexico. Sustainability 15 (18): 13462. DOI: 10.3390/su151813462.
Raihan A, Said MNM. 2022. Cost–benefit analysis of climate change mitigation measures in the forestry sector of Peninsular Malaysia. Earth Syst Env 6 (2): 405-419. DOI: 10.1007/s41748-021-00241-6.
Raihan A, Tuspekova A. 2022a. The nexus between economic growth, renewable energy use, agricultural land expansion, and carbon emissions: New insights from Peru. Energy Nexus 6 100067. DOI: 10.1016/j.nexus.2022.100067.
Raihan A, Tuspekova A. 2022b. Nexus between economic growth, energy use, agricultural productivity, and carbon dioxide emissions: New evidence from Nepal. Energy Nexus 7: 100113. DOI: 10.1016/j.nexus.2022.100113.
Raihan A, Tuspekova A. 2022c. Nexus between emission reduction factors and anthropogenic carbon emissions in India. Anthropocene Sci 1 (2): 295-310. DOI: 10.1007/s44177-022-00028-y.
Raihan A, Tuspekova A. 2022d. Toward a sustainable environment: Nexus between economic growth, renewable energy use, forested area, and carbon emissions in Malaysia. Resour Conserv Recycl Adv 15: 200096. DOI: 10.1016/j.rcradv.2022.200096.
Raihan A, Tuspekova A. 2022e. Dynamic impacts of economic growth, renewable energy use, urbanization, industrialization, tourism, agriculture, and forests on carbon emissions in Turkey. Carbon Res 1 (1): 20. DOI: 10.1007/s44246-022-00019-z.
Raihan A, Tuspekova A. 2022f. Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan. World Dev Sustain 1: 100019. DOI: 10.1016/j.wds.2022.100019.
Raihan A, Tuspekova A. 2022g. Dynamic impacts of economic growth, energy use, urbanization, tourism, agricultural value-added, and forested area on carbon dioxide emissions in Brazil. J Env Stud Sci 12 (4): 794-814. DOI: 10.1007/s13412-022-00782-w.
Raihan A, Tuspekova A. 2022h. Nexus between energy use, industrialization, forest area, and carbon dioxide emissions: New insights from Russia. J Env Sci Econ 1 (4): 1-11. DOI: 10.56556/jescae.v1i4.269.
Raihan A, Tuspekova A. 2022i. Towards sustainability: Dynamic nexus between carbon emission and its determining factors in Mexico. Energy Nexus 8: 100148. DOI: 10.1016/j.nexus.2022.100148.
Raihan A, Tuspekova A. 2022j. Role of economic growth, renewable energy, and technological innovation to achieve environmental sustainability in Kazakhstan. Curr Res Env Sustain 4: 100165. DOI: 10.1016/j.crsust.2022.100165.
Raihan A, Tuspekova A. 2022k. The nexus between economic growth, energy use, urbanization, tourism, and carbon dioxide emissions: New insights from Singapore. Sustain Analytics Model 2: 100009. DOI: 10.1016/j.samod.2022.100009.
Raihan A, Tuspekova A. 2023a. The role of renewable energy and technological innovations toward achieving Iceland’s goal of carbon neutrality by 2040. J Technol Innov Energy 2 (1): 22-37. DOI: 10.56556/jtie.v2i1.421.
Raihan A, Tuspekova A. 2023b. Towards net zero emissions by 2050: The role of renewable energy, technological innovations, and forests in New Zealand. J Env Sci Econ 2 (1): 1-16. DOI: 10.56556/jescae.v2i1.422.
Raihan A, Voumik LC, Nafi SM, Kuri BC. 2022j. How tourism affects women's employment in Asian Countries: An application of GMM and quantile regression. J Soc Sci Manag Stud 1 (4): 57-72. DOI: 10.56556/jssms.v1i4.335.
Raihan A, Voumik LC, Yusma N, Ridzuan AR. 2023e. The nexus between international tourist arrivals and energy use towards sustainable tourism in Malaysia. Front Env Sci 11: 575. DOI: 10.3389/fenvs.2023.1131782.
Raihan A, Voumik LC. 2022a. Carbon emission dynamics in India due to financial development, renewable energy utilization, technological innovation, economic growth, and urbanization. J Env Sci Econ 1 (4): 36-50. DOI: 10.56556/jescae.v1i4.412.
Raihan A, Voumik LC. 2022b. Carbon emission reduction potential of renewable energy, remittance, and technological innovation: Empirical evidence from China. J Technol Innov Energy 1 (4): 25-36. DOI: 10.56556/jtie.v1i4.398.
Raihan A. 2023a. Economy-energy-environment nexus: The role of information and communication technology towards green development in Malaysia. Innov Green Dev 2: 100085. DOI: 10.1016/j.igd.2023.100085.
Raihan A. 2023b. An econometric assessment of the relationship between meat consumption and greenhouse gas emissions in the United States. Env Process 10 (2): 32. DOI: 10.1007/s40710-023-00650-x.
Raihan A. 2023c. An econometric evaluation of the effects of economic growth, energy use, and agricultural value added on carbon dioxide emissions in Vietnam. Asia-Pac J Reg Sci 7: 665-696. DOI: 10.1007/s41685-023-00278-7.
Raihan A. 2023d. The dynamic nexus between economic growth, renewable energy use, urbanization, industrialization, tourism, agricultural productivity, forest area, and carbon dioxide emissions in the Philippines. Energy Nexus 9: 100180. DOI: 10.1016/j.nexus.2023.100180.
Raihan A. 2023e. Exploring environmental kuznets curve and pollution haven hypothesis in Bangladesh: The impact of foreign direct investment. J Env Sci Econ 2 (1): 25-36. DOI: 10.56556/jescae.v2i1.451.
Raihan A. 2023f. The contribution of economic development, renewable energy, technical advancements, and forestry to Uruguay's objective of becoming carbon neutral by 2030. Carbon Res 2: 20. DOI: 10.1007/s44246-023-00052-6.
Raihan A. 2023g. The influences of renewable energy, globalization, technological innovations, and forests on emission reduction in Colombia. Innov Green Dev 2: 100071. DOI: 10.1016/j.igd.2023.100071.
Raihan A. 2023h. Toward sustainable and green development in Chile: Dynamic influences of carbon emission reduction variables. Innov Green Dev 2: 100038. DOI: 10.1016/j.igd.2023.100038.
Raihan A. 2023i. Nexus between economic growth, natural resources rents, trade globalization, financial development, and carbon emissions toward environmental sustainability in Uruguay. Electron J Educ Soc Econ Technol 4 (2): 55-65. DOI: 10.33122/ejeset.v4i2.102.
Raihan A. 2023j. Nexus between Greenhouse gas emissions and its determinants: the role of renewable energy and technological innovations towards green development in South Korea. Innov Green Dev 2: 100066. DOI: 10.1016/j.igd.2023.100066.
Raihan A. 2023k. Nexus between information technology and economic growth: New insights from India. J Inf Econ 1 (2): 37-48. DOI: 10.58567/jie01020003.
Raihan A. 2023l. A concise review of technologies for converting forest biomass to bioenergy. J Technol Innov Energy 2 (3): 10-36. DOI: 10.56556/jtie.v2i3.592.
Raihan A. 2023m. A review on the integrative approach for economic valuation of forest ecosystem services. J Env Sci Eco 2 (3): 1-18. DOI: 10.56556/jescae.v2i3.554.
Raihan A. 2023n. Economic growth and carbon emission nexus: The function of tourism in Brazil. J Eco Statis 1 (2): 68-80. DOI: 10.58567/jes01020005.
Raihan A. 2023o. Green energy and technological innovation towards a low-carbon economy in Bangladesh. Green Low-Carbon Econ 00 (00): 1-11. DOI: 10.47852/bonviewGLCE32021340.
Ramirez-Santos AG, Ravera F, Rivera-Ferre MG, Calvet-Nogués M. 2023. Gendered traditional agroecological knowledge in agri-food systems: A systematic review. J Ethnobiol Ethnomed 19 (1): 1-19. DOI: 10.1186/s13002-023-00576-6.
Ranasinghe RDAK, Korale-Gedara PM, Weerasooriya SA. 2023. Climate change adaptation and adaptive capacities of dairy farmers: Evidence from village tank cascade systems in Sri Lanka. Agricult Syst 206: 103609. DOI: 10.1016/j.agsy.2023.103609.
Reiner F, Brandt M, Tong X, Skole D, Kariryaa A, Ciais P, Fensholt R. 2023. More than one quarter of Africa’s tree cover is found outside areas previously classified as forest. Nat Commun 14 (1): 2258. DOI: 10.1038/s41467-023-37880-4.
Ripple WJ, Wolf C, Newsome TM, Barnard P, Moomaw WR. 2020. Corrigendum: World scientists’ warning of a climate emergency. BioSci 70 (1): 100-100. DOI: 10.1093/biosci/biz088.
Rivera-Ferre MG, Di Masso M, Vara I, Cuellar M, López-i-Gelats F, Bhatta GD, Gallar D. 2021. Traditional agricultural knowledge in land management: The potential contributions of ethnographic research to climate change adaptation in India, Bangladesh, Nepal, and Pakistan. Clim Dev 13 (7): 644-661. DOI: 10.1080/17565529.2020.1848780.
Roberts MS. 2019. Sustainability and traditional livelihood systems in northern Lao PDR with an emphasis on edible insects. Intl Rev Mod Sociol 45 (2): 93-123.
Rodrigues CID, Brito LM, Nunes LJ. 2023. Soil carbon sequestration in the context of climate change mitigation: A review. Soil Syst 7 (3): 64. DOI: 10.3390/soilsystems7030064.
Rosenstock TS, Wilkes A, Jallo C, Namoi N, Bulusu M, Suber M, Wollenberg E. 2019. Making trees count: Measurement and reporting of agroforestry in UNFCCC national communications of non-Annex I countries. Agric Ecosyst Environ 284: 106569. DOI: 10.1016/j.agee.2019.106569.
Ruba UB, Talucder MSA. 2023. Potentiality of homestead agroforestry for achieving sustainable development goals: Bangladesh perspectives. Heliyon 9: e14541. DOI: 10.1016/j.heliyon.2023.e14541.
San SM, Kumar N, Biber-Freudenberger L, Schmitt CB. 2023. Agroforestry-based community forestry as a large-scale strategy to reforest agricultural encroachment areas in Myanmar: Ambition vs. local reality. Ann For Sci 80 (1): 1-15. DOI: 10.1186/s13595-023-01191-x.
Santoro A. 2023. Traditional oases in Northern Africa as multifunctional agroforestry systems: A systematic literature review of the provided Ecosystem Services and of the main vulnerabilities. Agrofor Syst 97 (1), 81-96. DOI: 10.1007/s10457-022-00789-w.
Sarkar S, Maity SS, Maity R. 2023. Precipitation-based climate change hotspots across India through a multi-model assessment from CMIP6. J Hydrol 623: 129805. DOI: 10.1016/j.jhydrol.2023.129805.
Shah TM, Khan AH, Nicholls C, Sohoo I, Otterpohl R. 2023. Using landfill sites and marginal lands for socio-economically sustainable biomass production through cultivation of non-food energy crops: An analysis focused on South Asia and Europe. Sustainability 15 (6): 4923. DOI: 10.3390/su15064923.
Sheikh R, Islam MA, Sharmin A, Biswas R, Kumar J. 2021. Sustainable agroforestry practice in Jessore district of Bangladesh. Eur J Agric Food Sci 3 (1): 1-10. DOI: 10.24018/ejfood.2021.3.1.150.
Shennan?Farpón Y, Mills M, Souza A, Homewood K. 2022. The role of agroforestry in restoring Brazil's Atlantic Forest: Opportunities and challenges for smallholder farmers. People Nat 4 (2): 462-480. DOI: 10.1002/pan3.10297.
Shin S, Soe KT, Lee H, Kim TH, Lee S, Park MS. 2020. A systematic map of agroforestry research focusing on ecosystem services in the Asia-Pacific Region. Forests 11 (4): 368. DOI: 10.3390/f11040368.
Siankwilimba E, Mumba C, Hang’ombe BM, Munkombwe J, Hiddlestone-Mumford J, Dzvimbo MA, Hoque ME. 2023. Bioecosystems towards sustainable agricultural extension delivery: effects of various factors. Env Dev Sustain 2023: 1-43. DOI: 10.1007/s10668-023-03555-9.
Stange G, Pagogna R, Sterly H, Sakdapolrak P, Borderon M, Schraven B, Serraglio DA. 2023. Impeded migration as adaptation: COVID-19 and its implications for translocal strategies of environmental risk management. Adv Southeast Asian Stud 16 (1): 157-169. DOI: 10.14764/10.ASEAS-0093.
Steger C. 2023. A roof of one's own: choice and access in global thatch sustainability. World Dev Sustain 3: 100088. DOI: 10.1016/j.wds.2023.100088.
Sultana T, Hossain MS, Voumik LC, Raihan A. 2023. Does globalization escalate the carbon emissions? Empirical evidence from selected next-11 countries. Energy Rep 10: 86-98. DOI: 10.1016/j.egyr.2023.06.020.
Tan SS, Kuebbing SE. 2023. A synthesis of the effect of regenerative agriculture on soil carbon sequestration in Southeast Asian croplands. Agric Ecosyst Env 349: 108450. DOI: 10.1016/j.agee.2023.108450.
Telwala Y. 2023. Unlocking the potential of agroforestry as a nature-based solution for localizing sustainable development goals: A case study from a drought-prone region in rural India. Nat-Based Solut 3: 100045. DOI: 10.1016/j.nbsj.2022.100045.
Tiemann T, Douxchamps S. 2023. Opportunities and challenges for integrated smallholder farming systems to improve soil nutrient management in Southeast Asia. World Dev Sustain 3: 100080. DOI: 10.1016/j.wds.2023.100080.
Tschora H, Cherubini F. 2020. Co-benefits and trade-offs of agroforestry for climate change mitigation and other sustainability goals in West Africa. Glob Ecol Conserv 22: e00919. DOI: 10.1016/j.gecco.2020.e00919.
Udawatta RP, Rankoth LM, Jose S. 2019. Agroforestry and biodiversity. Sustainability 11 (10): 2879. DOI: 10.3390/su11102879.
Usman M, Ali A, Bashir MK, Baig SA, Mushtaq K, Abbas A, Iqbal MS. 2023. Modelling wellbeing of farmers by using nexus of climate change risk perception, adaptation strategies, and their drivers on irrigation water in Pakistan. Env Sci Pollut Res 30 (17): 49930-49947. DOI: 10.1007/s11356-023-25883-z.
Villa PM, Martins SV, de Oliveira Neto SN, Rodrigues AC, Hernández EP, Kim DG. 2020. Policy forum: Shifting cultivation and agroforestry in the Amazon: Premises for REDD+. For Pol Econ 118: 102217. DOI: 10.1016/j.forpol.2020.102217.
Voumik LC, Islam MJ, Raihan A. 2022. Electricity production sources and CO2 emission in OECD countries: static and dynamic panel analysis. Glob Sustain Res 1 (2): 12-21. DOI: 10.56556/gssr.v1i2.327.
Voumik LC, Mimi MB, Raihan A. 2023. Nexus between urbanization, industrialization, natural resources rent, and anthropogenic carbon emissions in South Asia: CS?ARDL approach. Anthropocene Sci 2: 48-61. DOI: 10.1007/s44177-023-00047-3.
Wakweya RB. 2023. Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. J Agric Food Res 14: 100698. DOI: 10.1016/j.jafr.2023.100698.
Waldron A, Garrity D, Malhi Y, Girardin C, Miller DC, Seddon N. 2017. Agroforestry can enhance food security while meeting other sustainable development goals. Trop Conserv Sci 10: 1940082917720667. DOI: 10.1177/1940082917720667.
Wallbott L, Florian-Rivero EM. 2018. Forests, rights and development in Costa Rica: a political ecology perspective on indigenous peoples’ engagement in REDD+. Confl Secur Dev 18 (6): 493-519. DOI: 10.1080/14678802.2018.1532643.
Wang J, Li W, Haq SU, Shahbaz P. 2023. Adoption of renewable energy technology on farms for sustainable and efficient production: exploring the role of entrepreneurial orientation, farmer perception and government policies. Sustainability 15 (7): 5611. DOI: 10.3390/su15075611.
Westholm L, Ostwald M. 2020. Food production and gender relations in multifunctional landscapes: A literature review. Agrofor Syst 94 (2): 359-374. DOI: 10.1007/s10457-019-00397-1.
Wienhold K, Goulao LF. 2023. The embedded agroecology of coffee agroforestry: A contextualized review of smallholder farmers’ adoption and resistance. Sustainability 15 (8): 6827. DOI: 10.3390/su15086827.
Yahya MS, Atikah SN, Mukri I, Oon A, Hawa A, Sanusi R, Azhar B. 2023. Potential of agroforestry orchards as a conservation set-aside initiative in industrial rubber tree and oil palm plantations for avian biodiversity. Biodivers Conserv 32 (6): 2101-2125. DOI: 10.1007/s10531-023-02594-y.
Yang Y, Liu B, Wang P, Chen WQ, Smith TM. 2020. Toward sustainable climate change adaptation. J Ind Ecol 24 (2): 318-330. DOI: 10.1111/jiec.12984.
Yasin G, Nawaz MF, Martin TA, Niazi NK, Gul S, Yousaf MTB. 2019. Evaluation of agroforestry carbon storage status and potential in irrigated plains of Pakistan. Forests 10 (8): 640. DOI: 10.3390/f10080640.
Yasin G, Nawaz MF, Zubair M, Azhar MF, Gilani MM, Ashraf MN, Rahman SU. 2023. Role of traditional agroforestry systems in climate change mitigation through carbon sequestration: An investigation from the semi-arid region of Pakistan. Land 12 (2): 513. DOI: 10.3390/land12020513.
Zhai H, Gu B, Wang Y. 2023. Evaluation of policies and actions for nature-based solutions in nationally determined contributions. Land Use Policy 131: 106710. DOI: 10.1016/j.landusepol.2023.106710.
Zomer RJ, Bossio DA, Trabucco A, van Noordwijk M, Xu J. 2022. Global carbon sequestration potential of agroforestry and increased tree cover on agricultural land. Circ Agric Syst 2 (1): 1-10. DOI: 10.48130/CAS-2022-0003.
Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, Wang M. 2016. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci Rep 6 (1): 29987. DOI: 10.1038/srep29987.
Zomer RJ, Trabucco A, Coe R, Place F, Van Noordwijk M, Xu JC. 2014. Trees on Farms: An Update and Reanalysis of Agroforestry’s Global Extent and Socio-Ecological Characteristics. Working Paper 179, World Agroforestry Center, Bogor, Indonesia. DOI: 10.5716/WP14064.PDF.