Species distribution modelling to identify invasion hotspots of Ageratina riparia in Mizoram, India

##plugins.themes.bootstrap3.article.main##

RABISHANKAR SENGUPTA
SUDHANSU S. DASH
https://orcid.org/0000-0002-6754-2600

Abstract

Abstract. Sengupta R, Dash SS. 2024. Species distribution modelling to identify invasion hotspots of Ageratina riparia in Mizoram, India. Asian J For 8: 184-193. The accelerated pace of globalization, increased human mobility, and the intensification of global trade have significantly amplified the spread of non-native species worldwide. The introduction of these alien species has triggered invasive consequences, further intensified by climate change. Accurately predicting the spread of invasive species under changing climatic conditions is essential for identifying vulnerable regions and formulating effective management strategies to limit their spread. This study projected and identified invasion hotspots for the neo-invasive species Ageratina riparia in Mizoram, using its current distribution patterns and projected climate changes. Habitat suitability modelling, performed with the Maximum Entropy (MaxEnt) machine learning algorithm using default settings, showed that the current distribution of A. riparia encompasses 4.78% of Mizoram's area, deemed suitable for varying levels of invasion. Projections for 2050 and 2070 indicated that suitable habitats for A. riparia could expand to 6.19% of Mizoram's area by 2050 under the RCP 4.5 scenario, relative to its present distribution. This anticipated expansion, combined with an upward shift in elevation, highlights the urgent need for effective management strategies to mitigate the invasion by A. riparia. The findings provide critical insights for identifying and projecting invasion hotspots, which are essential for early-stage management of A. riparia invasions.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Adhikari D, Tiwary R, Barik SK. 2015. Modeling hotspots for invasive alien plants in India. PloS one 10 (7): e0134665. DOI: 10.1371/journal.pone.0134665.
Adhikari P, Lee YH, Poudel A, Hong SH, Park YS. 2023. Global spatial distribution of Chromolaena odorata habitat under climate change: random forest modeling of one of the 100 worst invasive alien species. Sci Rep 13: 9745. DOI: 10.1038/s41598-023-36358-z.
Ahmed DA, Hudgins EJ, Cuthbert RN, Haubrock PJ, Renault D, Bonnaud E, Courchamp F. 2022. Modeling the damage costs of invasive alien species. Biological Invasions 24: 1949-1972. DOI: 10.1007/s10530-021-02586-5.
Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: Prevalence kappa and the True Skill Statistic (TSS). J Appl Ecol 43 (6): 1223-1232. DOI: 10.1111/j.1365-2664.2006.01214.x.
Bhattarai KR, Måren IE, Subedi SC. 2014. Biodiversity and invasibility: Distribution patterns of invasive plant species in the Himalayas, Nepal. J Mount Sci 11: 688-696. DOI: 10.1007/s11629-013-2821-3.
Boral D, Moktan S. 2022. Mapping the spatial distribution of the invasive Mexican Sunflower Tithonia diversifolia (Asteraceae) in South East Asia. J Asia-Pac Biodivers 15 (3): 425-434. DOI: 10.1016/j.japb.2022.03.006.
Botella C, Joly A, Monestiez P, Bonnet P, Munoz F. 2020. Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection. PLoS One 15 (5): e0232078. DOI: 10.1371/journal.pone.0232078.
Brown JL, Bennett JR, French CM. 2017. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5: e4095. DOI: 10.7717/peerj.4095.
Changjun G, Yanli T, Linshan L, Bo W, Yili Z, Haibin Y, Bohao C. 2021. Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecol Evol 11 (17): 12092-12113. DOI: 10.1002/ece3.7974.
Choudhury MR, Deb P, Singha H, Chakdar B, Medhi M. 2016. Predicting the probable distribution and threat of invasive Mimosa diplotricha Suavalle and Mikania micrantha Kunth in a protected tropical grassland. Ecol Eng 97: 23-31. DOI: 10.1016/j.ecoleng.2016.07.018.
Datta A, Schweiger O, Kühn I. 2019. Niche expansion of the invasive plant species Ageratina adenophora despite evolutionary constraints. J Biogeogr 46 (7): 1306-1315. DOI: 10.1111/jbi.13579.
Essl F, Lenzner B, Bacher S et al. 2020. Drivers of future alien species impacts: An expert?based assessment. Glob Chang Biol 26 (9): 4880-4893. DOI: 10.1111/gcb.15199.
Fandohan AB, Oduor AM, Sodé AI, Wu L, Cuni-Sanchez A, Assédé E, Gouwakinnou GN. 2015. Modeling vulnerability of protected areas to invasion by Chromolaena odorata under current and future climates. Ecosyst Health Sustain 1 (6): 11878996. DOI: 10.1890/EHS15-0003.1.
Fang Y, Zhang X, Wei H, Wang D, Chen R, Wang L, Gu W. 2021. Predicting the invasive trend of exotic plants in China based on the ensemble model under climate change: A case for three invasive plants of Asteraceae. Sci Total Environ 756: 143841. DOI: 10.1016/j.scitotenv.2020.143841.
Forest Survey of India (FSI). 2021. State of Forest Report Ministry of Environment Forest and Climate Change, Dehradun. https://fsi.nic.in/forest-report-2021-details.
Fournier A, Penone C, Pennino MG, Courchamp F. 2019. Predicting future invaders and future invasions. Proc Natl Acad Sci 116 (16): 7905-7910. DOI: 10.1073/pnas.1803456116.
Goncalves E, Herrera I, Duarte M, Bustamante RO, Lampo M, Velasquez G, Sharma GP, García-Rangel S. 2014. Global invasion of Lantana camara: Has the climatic niche been conserved across continents? PLoS One 9 (10): e111468. DOI: 10.1371/journal.pone.0111468.
Griffies SM, Winton M, Donner LJ et al. 2011. The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J Clim 24 (13): 3520-3544. DOI: 10.1175/2011JCLI3964.1.
Hautier Y, Tilman D, Isbell F, Seabloom EW, Borer ET, Reich PB. 2015. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348 (6232): 336-340. DOI: 10.1126/science.aaa1788.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high-resolution interpolated climate surfaces for global land areas. Intl J Climatol 25 (15): 1965-1978. DOI: 10.1002/joc.1276.
Lamsal P, Kumar L, Aryal A, Atreya K. 2018. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 47 (6): 697-710. DOI: 10.1007/s13280-018-1017-z.
Li Y, Song T, Lai Y, Huang Y, Fang L, Chang J. 2022. Status, mechanism, suitable distribution areas and protection countermeasure of invasive species in the karst areas of Southwest China. Front Environ Sci 10: 957216. DOI: 10.3389/fenvs.2022.957216.
Ma?i? V, Albano PG, Almpanidou V et al. 2018. Biological invasions in conservation planning: A global systematic review. Front Mar Sci 5: 178. DOI: 10.3389/fmars.2018.00178.
Merow C, Bois ST, Allen JM, Xie Y, Silander Jr JA. 2017. Climate change both facilitates and inhibits invasive plant ranges in New England. Proc Natl Acad Sci 114 (16): e3276-e3284. DOI: 10.1073/pnas.1609633114.
Mushtaq S, Reshi ZA, Shah MA, Charles B. 2021. Modelled distribution of an invasive alien plant species differs at different spatiotemporal scales under changing climate: A case study of Parthenium hysterophorus L. Trop Ecol 62 (3): 398-417. DOI: 10.1007/s42965-020-00135-0.
Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. 2017. Opening the black box: An open?source release of MaxEnt. Ecography 40 (7): 887-893. DOI: 10.1111/ecog.03049.
Phillips SJ, Dudík M. 2008. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 31 (2): 161-175. DOI: 10.1111/j.0906-7590.2008.5203.x.
Poudel AS, Shrestha BB, Joshi MD, Muniappan R, Adiga A, Venkatramanan S, Jha PK. 2020. Predicting the current and future distribution of the invasive weed Ageratina adenophora in the Chitwan–Annapurna Landscape Nepal. Mount Res Dev 40 (2): R61. DOI: 10.1659/MRD-JOURNAL-D-19-00069.1.
Rameshprabu N, Swamy PS. 2015. Prediction of environmental suitability for invasion of Mikania micrantha in India by species distribution modeling. J Environ Biol 36 (3) : 565-570.
Ray D, Behera MD, Jacob J. 2019. Comparing invasiveness of native and non-native species under changing climate in North-East India: Ecological niche modeling with plant types differing in biogeographic origin. Environ Monit Assess 191: 793. DOI: 10.1007/s10661-019-7685-8.
Richardson DM, Rejmánek M. 2011. Trees and shrubs as invasive alien species–a global review. Divers Distrib 17 (5): 788-809. DOI: 10.1111/j.1472-4642.2011.00782.x.
Saranya KRL, Lakshmi TV, Reddy CS. 2021. Predicting the potential sites of Chromolaena odorata and Lantana camara in forest landscape of Eastern Ghats using habitat suitability models. Ecol Inf 66: 101455. DOI: 10.1016/j.ecoinf.2021.101455.
Seebens H, Blackburn TM, Dyer EE et al. 2017. No saturation in the accumulation of alien species worldwide. Nat Commun 8: 14435. DOI: 10.1038/ncomms14435.
Sengupta R, Dash SS. 2020. Invasion status of three non-native species from family Asteraceae in Mizoram. Nelumbo 62 (1): 27-39. DOI: 10.20324/nelumbo/v62/2020/153742.
Sengupta R, Dash SS. 2023a. Ecological impact of alien plant invasion in national parks of an Indo-Burma biodiversity hotspot in India. J Agric Ecol 15: 109-124. DOI: DOI: 10.58628/JAE-2315-119.
Sengupta R, Dash SS. 2023b. Predicting the potential invasion hotspots of Chromolaena odorata under current and future climate change scenarios in heterogeneous ecological landscapes of Mizoram India. Res Ecol 5(4): 1-12. DOI: 10.30564/re.v5i4.5920.
Shrestha BB, Shabbir A, Adkins S W. 2015. Parthenium hysterophorus in Nepal: a review of its weed status and possibilities for management. Weed Res 55 (2): 132-144. DOI: 10.1111/wre.12133.
Tererai F, Wood AR. 2014. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. S Afr J Bot 95: 152-158. DOI: 10.1016/j.sajb.2014.09.001.
Thapa S, Chitale V, Rijal SJ, Bisht N, Shrestha BB. 2018. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PloS one 13 (4): e0195752. DOI: 10.1371/journal.pone.0195752.
Tiwari S, Mishra SN, Kumar D, Kumar B, Vaidya SN, Ghosh BG, Rahaman SM, Khatun M, Garai S, Kumar A. 2022. Modelling the potential risk zone of Lantana camara invasion and response to climate change in eastern India. Ecol Process 11: 10. DOI: 10.1186/s13717-021-00354-w.
Tripathi RS, Yadav AS, Kushwaha SPS. 2012. Biology of Chromolaena odorata, Ageratina adenophora and Ageratina riparia: A review Invasive alien plants. An ecological appraisal of Indian Subcontinent 32: 43-56, Springer. DOI: 10.1079/9781845939076.0043.
Valavi R, Guillera?Arroita G, Lahoz?Monfort JJ, Elith J. 2022. Predictive performance of presence?only species distribution models: A benchmark study with reproducible code. Ecol Monogr 92 (1): e01486. DOI: 10.1002/ecm.1486.
Vaz AS, Alcaraz-Segura D, Campos JC, Vicente JR, Honrado JP. 2018. Managing plant invasions through the lens of remote sensing: A review of progress and the way forward. Sci Total Environ 642: 1328-1339. DOI: 10.1016/j.scitotenv.2018.06.134.
Vilà M, Basnou C, Pyšek P et al. 2010. How well do we understand the impacts of alien species on ecosystem services? A pan?European cross?taxa assessment. Front Ecol Environ 8 (3): 135-144. DOI: 10.1890/080083.
Xian X, Zhao H, Wang R, Zhang H, Chen B, Huang H, Liu W, Wan F. 2022. Predicting the potential geographical distribution of Ageratina adenophora in China using equilibrium occurrence data and ensemble model. Front Ecol Evol 10: 973371. DOI: 10.3389/fevo.2022.973371.
Yang G, Gui F, Liu W, Wan F. 2017. Crofton weed Ageratina adenophora Sprengel. In: Wan F, Jiang M, Zhan A (eds). Biological Invasions and Its Management in China. Springer, Singapore. DOI: 10.1007/978-981-10-3427-5_8.