Modeling the future distributions of Centropus bengalensis (Lesser coucal) in Muara Gembong Wetlands, West Java, Indonesia, related to CMIP5 climate change scenarios

##plugins.themes.bootstrap3.article.main##

ANDRIO A. WIBOWO
VITA MEYLANI
NISSA AZZAHRA PRATIWI
DIVA NADHYA FEBRIANI
NASYA NURUL SURYAWATI

Abstract

Abstract. Wibowo AA, Meylani V, Pratiwi NA, Febriani DN, Suryawati NN. 2024. Modeling the future distributions of Centropus bengalensis (Lesser coucal) in Muara Gembong Wetlands, West Java, Indonesia, related to CMIP5 climate change scenarios. Intl J Bonorowo Wetlands 14: 49-56. Wetlands and their water birds have been threatened recently due to climate change. In West Java, Muara Gembong is a threatened wetland along with lesser coucal (Centropus bengalensis, Gmelin 1788). This study aimed to model and forecast the distribution of Lesser coucal in the remaining wetland habitats to support species conservation. The novelty of this study is that it uses future Species Distribution Modeling (SDM) based on climate change scenarios. Modeling was performed based on SDM using R platforms incorporating 19 bioclimatic variables. The climate change scenarios used trajectories based on the 5th Coupled Model Intercomparison Project (CMIP) using RCP 2.6 and RCP 8.5 trajectories for 2050 and 2070. A multicollinearity test was performed, and the coucal occurrences were recorded at five sampling points. The results show climate change scenarios will significantly alter the suitable habitats for coucal, and the Area Under the Curve (AUC) is 0.75. The distribution of the species is mostly affected by isothermality (Bio 3), temperature annual range (Bio 7), and precipitation seasonality (Bio 15). In the low emission scenario, or RCP 2.6, from 2050 to 2070, it is predicted that the suitable habitats for coucals will be increased and expanded to the east and the north in coastal areas. Habitats classified in 2050 as less suitable will become moderately suitable in 2070 under the RCP 2.6 scenario. This condition is contrary to the high emission scenario under RCP 8.5. In this scenario, the habitats with high suitability only increased slightly. At the same time, and opposite to the low emission scenario, the RCP 8.5 scenario will cause moderately suitable habitats to become less suitable or have low suitability. This study provides empirical evidence of how a climate change scenario with high emissions can impact the water birds living in the wetlands.

##plugins.themes.bootstrap3.article.details##

References
Andari L, Sugianto DN, Wirasatriya A, Ginanjar S. 2023. Identification of sea level rise and land subsidence based on sentinel 1 data in the coastal city of Pekalongan, Central Java, Indonesia. Jurnal Kelautan Tropis 26 (2): 329-339. DOI: 10.14710/jkt.v26i2.18324.
Arshad F, Waheed M, Fatima K, Harun N, Iqbal M, Fatima K, Umbreen S. 2022. Predicting the suitable current and future potential distribution of the native endangered tree Tecomella undulata (sm.) seem. in Pakistan. Sustainability 14: 7215. DOI: 10.3390/su1412721.
Aryanti NA, Susilo TSSD, Ningtyas AN, Rahmadana, M. 2021. Spatial modeling of Javan Hawk-Eagle (Nisaetus bartelsi) habitat suitability in Bromo Tengger Semeru National Park. Jurnal Sylva Lestari 9 (1): 179-189. DOI: 10.23960/jsl19179-189.
As’ary M, Setiawan Y, Rinaldi D. 2023. Analysis of changes in habitat suitability of the Javan Leopard, 2000-2020. Diversity 15: 529. DOI: 10.3390/d15040529.
Bivand R. 2022. R packages for analyzing spatial data: A comparative case study with areal data. Geogr Anal 54 (3): 488-518. DOI: 10.1111/gean.12319.
Chenon RD, Susanto A. 2006. Ecological observations on diurnal birds in indonesian oil palm plantations. J Oil Palm Res April 2006: 122-143.
Dong H, Zhang N, Shen S, Zhu S, Fan S, Lu Y. 2023. Effects of climate change on the spatial distribution of the threatened species Rhododendron purdomii in Qinling-Daba Mountains of Central China: Implications for conservation. Sustainability 15 (4): 3181. DOI: 10.3390/su15043181.
Ekowati A. 2019. Pemanfaatan Situ Cihuni sebagai Habitat Berbagai Jenis Burung. [Thesis]. Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta, Jakarta. [Indonesian]
Fathani MH. 2020. Bird Communities in Wetland Ecosystems of Muara Gembong, Bekasi. [Thesis]. Departemen Konservasi Sumber Daya Hutan dan Ekowisata Fakultas Kehutanan Dan Lingkungan Institun Petanian Bogor, Bogor. [Indonesian]
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. Intl J Climatol 25: 1965-1978. DOI: 10.1002/joc.1276.
IPCC. 2008. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. IPCC Expert Meeting Report, Noordwijkerhout, The Netherlands.
Khan AM, Li Q, Saqib Z, Khan N, Habib T, Khalid N, Majeed M, Tariq A. 2022. Maxent modelling and impact of climate change on habitat suitability variations of economically important Chilgoza pine (Pinus gerardiana wall.) in South Asia. Forests 13: 715. DOI: 10.3390/f13050715.
Khanum R, Mumtaz A, Kumar S. 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol 49: 23-31. DOI: 10.1016/J.ACTAO.2013.02.007.
Kismawardhani RA, Wirastriya A, Berlianty D. 2018. Sea level rise in The Java Sea based on altimetry satellites data over 1993-2015. IOP Conf Ser: Earth Environ Sci 165: 012006. DOI: 10.1088/1755-1315/165/1/012006.
Lemenkova P. 2020. Using R packages 'Tmap', 'Raster' and 'Ggmap' for cartographic visualization: An example of DEM-based terrain modelling of Italy, Apennine Peninsula. Zbornik radova - Geografski fakultet Univerziteta u Beogradu 68: 99-116. DOI: 10.5937/zrgfub2068099L.
Li X, Liu Y, Zhu Y. 2022. The effects of climate change on birds and approaches to response. IOP Conf Ser: Earth Environ Sci 1011: 012054. DOI: 10.1088/1755-1315/1011/1/012054.
Lorenza A. 2023. Keanekaragaman Jenis Burung di Taman Hutan Raya Bukit Sari Provinsi Jambi. [Thesis]. Program Studi Kehutanan Fakultas Pertanian Universitas Jambi, Jambi. [Indonesian]
MacKinnon JR, Phillipps K. 1993. A Field Guide to the Birds of Borneo, Sumatra, Java, and Bali, the Greater Sunda Islands. Oxford University Press, UK. DOI: 10.1093/oso/9780198540359.001.0001.
Mao M, Chen S, Qian Z, Xu Y. 2022. Using Maxent to predict the potential distribution of the little fire ant (Wasmannia auropunctata) in China. Insects 13: 1008. DOI: 10.3390/insects13111008.
Marcer A, Sáez L, Molowny-Horas R, Pons X, Pino J. 2013. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol Conserv 166: 221-230. DOI: 10.1016/j.biocon.2013.07.001.
Maulani A, Taufiq-SPJ N, Pratikto I. 2021. Perubahan lahan mangrove di Pesisir Muara Gembong, Bekasi, Jawa Barat. J Mar Res 10 (1): 55-63. DOI: 10.14710/jmr.v10i1.28396. [Indonesian]
Montenegro M, Solitario LA, Manglar SF, Guinto DD. 2017. Niche modelling of endangered philippine birds using GARP and MAXENT. 7th Intl Conf Cloud Comput Data Sci Eng Conflu 2017: 547-551. DOI: 10.1109/CONFLUENCE.2017.7943211.
Moreno R, Zamora R, Martínez JRM. 2011. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (MaxEnt). Ecol Inf 6 (6): 364-370. DOI: 10.1016/j.ecoinf.2011.07.003.
Pérez MS, Feria Arroyo TP, Venegas Barrera CS, Sosa-Gutiérrez C, Torres J, Brown KA, Gordillo Pérez G. 2023. Predicting the impact of climate change on the distribution of Rhipicephalus sanguineus in the Americas. Sustainability 15: 4557. DOI: 10.3390/su15054557.
Préau C, Trochet A, Bertrand R, Isselin-Nondedeu F. 2018. Modeling potential distributions of three European amphibian species comparing ENFA and MaxEnt. Herpetol Conserv Biol 13 (1): 91-104.
Promnikorn K, Jutamanee K, Kraichak E. 2019. Maxent model for predicting potential distribution of Vitex glabrata R.Br. in Thailand. Agric Nat Resour 53: 44-48.
Rana SK, Rana HK, Ghimire SK, Shrestha KK, Ranjitkar S. 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of liliaceae in Nepal. J Mt Sci 14 (3): 558-570. DOI: 10.1007/s11629-015-3822-1.
Rosencranz JA, Thorne KM, Buffington KJ, Takekawa JY, Hechinger RF, Stewart TE, Ambrose RF, MacDonald GM, Holmgren MA, Crooks JA, Patton RT, Lafferty KD. 2018. Sea-level rise, habitat loss, and potential extirpation of a salt marsh specialist bird in urbanized landscapes. Ecol Evol 8 (16): 8115-8125. DOI: 10.1002/ece3.4196.
Sauve D, Friesen VL, Charmantier A. 2021. The effects of weather on avian growth and implications for adaptation to climate change. Front Ecol Evol 9: 569741. DOI: 10.3389/fevo.2021.569741.
?ekercio?lu ÇH, Primack RB, Wormworth J. 2012. The effects of climate change on tropical birds. Biol Conserv 148: 1-18. DOI: 10.1016/j.biocon.2011.10.019.
Semu AA, Bekele T, Lulekal E, Cariñanos P, Nemomissa S. 2021. Projected impact of climate change on habitat suitability of a vulnerable endemic Vachellia negrii (Pic.Serm.) Kyal. & Boatwr (Fabaceae) in Ethiopia. Sustainability 13: 11275. DOI: 10.3390/su132011275.
Setiawan A, Iqbal M, Pormansyah, Priscillia B, Setiawan D, Yustian I. 2020. The importance of Sugihan wetlands (South Sumatra province) for birds habitat. AIP Conf Proc 2260: 020003. DOI: 10.1063/5.0015684.
Stephenson K, Wilson B, Taylor M, McLaren K, Veen R, Kunna J, Campbell J. 2022. Modelling climate change impacts on tropical dry forest fauna. Sustainability 14 (8): 4760. DOI: 10.3390/su14084760.
Tian Z, Huo D, Yi K, Que J, Lu Z, Hou J. 2023. Evaluation of suitable habitats for birds based on MaxEnt and Google Earth Engine—A case study of Baer's Pochard (Aythya baeri) in Baiyangdian, China. Remote Sens 16: 64. DOI: 10.3390/rs16010064.
Tohir RK, Sitanggang FI, Sutiawan R. 2020. The diversity, distribution and feeding guild of mammals and birds in Institut Teknologi Sumatera (ITERA) landscape. IOP Conf Ser: Earth Environ Sci 537: 012014. DOI: 10.1088/1755-1315/537/1/012014.
Ulak S, Paudel P. 2021. Maxent modelling for habitat suitability of vulnerable tree Dalbergia latifolia in Nepal. Silva Fennica 55 (4): 10441. DOI: 10.14214/sf.10441.
Vuuren DPV, Edmonds J, Kainuma M, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK. 2009. The representative concentration pathways: an overview. Clim Change 109: 5-31. DOI: 10.1007/s10584-011-0148-z.
Wang F, Yuan X, Sun Y, Liu Y. 2024. Species distribution modeling based on MaxEnt to inform biodiversity conservation in the Central Urban Area of Chongqing Municipality. Ecol Indic 158: 111491. DOI: 10.1016/j.ecolind.2023.111491.
Weeks BC, Klemz M, Wada H, Darling R, Dias T, O'Brien B K, Probst CM, Zhang M, Zimova M. 2022. Temperature, size and developmental plasticity in birds. Biol Lett 18 (12): 0357. DOI: 10.1098/rsbl.2022.0357.
Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius using Maxent model under climate change in China. Glob Ecol Conserv 16: e00477. DOI: 10.1016/j.gecco.2018.e00477.
Weyant J, Azar C, Kainuma M, Kejun J, Nakicenovic N, Shukla PR, La Rovere E, Yohe G. 2009. Report of 2.6 Versus 2.9 Watts/m2 RCPP Evaluation Panel. IPCC Secretariat, Geneva.
Zhang J, Jiang F, Li G, Qin W, Li S, Gao H, Cai Z, Lin G, Zhang T. 2019. Maxent modeling for predicting the spatial distribution of three raptors in the Sanjiangyuan National Park, China. Ecol Evol 9 (11): 6643-6654. DOI: 10.1002/ece3.5243.