Morphological identification of mosquito species in Takur Adu'a and Yakasai, Dutse Local Government Area, Jigawa State, Nigeria

##plugins.themes.bootstrap3.article.main##

SANI ADO UMAR
RAMGOPAL DHAKAR
HAMIMA SURAJ USMAN
MUSTAPHA SULAIMAN
MUBARAK SA’IDU
MADANIYYU SULAIMAN YAHAYA
AHMAD SADI SHITU
HABIB MUMAMMAD USMAN

Abstract

Abstract. Umar SA, Dhakar R, Usman HS, Sulaiman M, Sa’idu M, Yahaya MS, Shitu AS, Usman HM. 2024. Morphological identification of mosquito species in Takur Adu'a and Yakasai, Dutse Local Government Area, Jigawa State, Nigeria. Intl J Bonorowo Wetlands 14: 57-65. Mosquitoes, major vectors for various diseases, pose significant public health challenges worldwide. This study focuses on identifying and analyzing mosquito species in Takur Adu’a and Yakasai Areas of Jigawa State, Nigeria. Located in Northwestern Nigeria with Dutse as its capital, Jigawa State borders Kano, Katsina, Bauchi, Yobe, and the Zinder Region in Niger, facilitating cross-border trade. The major tribes are Hausa, Fulani, and Kanuri. Mosquito collection was conducted early in the morning using a prepared environment and spraying method. Morphological identification of differentiating species of mosquito are by palps, proboscis, wing patterns, body shape, and resting positions. In Takur Adu'a and Yakasai, a total of 449 mosquitoes were collected, 278 from Takur Adu'a and 171 from Yakasai. Aedes species included 21 females and 29 males; Culex had 82 females and 52 males; Anopheles had 35 females and 24 males; Anopheles gambiae had 7 females and 4 males; and non A. gambiae had 8 females and 16 males. Culex mosquitoes were the most dominant, followed by Aedes and Anopheles, with 71.2% being fed, indicating significant feeding activity and potential disease transmission. In Yakasai, Aedes species included 17 females and 12 males, Culex had 42 females and 50 males, Anopheles had 12 females and 16 males, A. gambiae had 8 females and 6 males, and non A. gambiae had 5 females and 3 males. The study identify only morphospecies but A. gambiae and non A. gambiae are different morphospecies but in the same genus. Culex was the most prevalent species, with 57.9% fed, highlighting a substantial risk of disease transmission. The study also assessed respondents' knowledge of mosquito bite prevention, finding significant awareness levels, though gaps remained, and necessitating targeted educational campaigns. Identifying multiple mosquito genera and species emphasizes the value of molecular methods for mosquito identification. The findings reveal a dominant presence of Culex mosquitoes and a high percentage of fed mosquitoes, indicating significant disease transmission risks. Continuous education and effective vector control strategies are crucial to mitigate health risks in Jigawa State.

##plugins.themes.bootstrap3.article.details##

References
Ahadji-Dabla K, Amoudji AD, Nyamador SW, Apétogbo GY, Chabi J, Glitho IA, Ketoh GK. 2019. High levels of knockdown resistance in Anopheles coluzzii and Anopheles gambiae (Diptera: Culicidae), major malaria vectors in Togo, West Africa: A 2011 monitoring report. J Med Entomol 56: 1159-1164. DOI: 10.1093/jme/tjz030.
Chukwuekezie O, Nwosu E, Nwangwu U, Dogunro F, Onwude C, Agashi N, Ezihe E, Anioke C, Anokwu S, Eloy E, Attah P, Orizu F, Ewo S, Okoronkwo A, Joseph A, Ikeakor I, Haruna S, Gnanguénon V. 2020. Resistance status of Anopheles gambiae (s.l.) to four commonly used insecticides for malaria vector control in South-East Nigeria. Parasites Vectors 13: 152. DOI: 10.1186/s13071-020-04027-z.
Coetzee M. 2020. Key to the females of Afrotropical Anopheles mosquitoes (Diptera: Culicidae). Malar J 19: 70. DOI: 10.1186/s12936-020-3144-9.
Dahalan F, Churcher T, Windbichler N, Lawniczak M. 2019. The male mosquito contribution towards malaria transmission: Mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites. PLoS Pathog 15 (11): e1008063. DOI: 10.1371/journal.ppat.1008063.
Dittmer J, Gabrieli P. 2020. Transstadial metabolic priming mediated by larval nutrition in female Aedes albopictus mosquitoes. J Insect Physiol 123: 104053. DOI: 10.1016/j.jinsphys.2020.104053.
Djihinto O, Medjigbodo A, Gangbadja A, Saizonou H, Lagnika H, Nanmede D, Djossou L, Bohounton R, Sovegnon P, Fanou M, Agonhossou R, Akoton R, Moussé W, Djogbénou L. 2022. Malaria-transmitting vectors microbiota: overview and interactions with Anopheles mosquito biology. Front Microbiol 13: 891573. DOI: 10.3389/fmicb.2022.891573.
Duval P, Aschan-Leygonie C, Moro C. 2023. A review of knowledge, attitudes, and practices regarding mosquitoes and mosquito-borne infectious diseases in nonendemic regions. Front Public Health 11: 1239874. DOI: 10.3389/fpubh.2023.1239874.
Fall F, Laroche M, Bossin H, Musso D, Parola P. 2021. Performance of MALDI-TOF mass spectrometry to determine the sex of mosquitoes and identify specific colonies from French Polynesia. Am J Trop Med Hyg 104 (5): 1907-1916. DOI: 10.4269/ajtmh.20-0031.
Gilleth 2015. Mosquito species diversity and distribution in three riverine communities in Taraba State, North-Eastern Nigeria. IOSR J Pharm Biol Sci 12 (2): 21-28. DOI: 10.9790/3008-1202032128.
Gillies MT, Coetzee M. 2019. A supplement to the Anophelinae of Africa South of the Sahara (Afrotropical region). South African Institute for Medical Research, Johannesburg.
Girard M, Martin E, Vallon L, Raquin V, Bellet C, Rozier Y, Desouhant E, Hay A, Luis P, Moro C, Minard G. 2021. Microorganisms associated with mosquito oviposition sites: implications for habitat selection and insect life histories. Microorganisms 9 (8): 1589. DOI: 10.3390/microorganisms9081589.
Gouveia-Oliveira R, Pedersen A. 2020. Higher variability in the number of sexual partners in males can contribute to a higher prevalence of sexually transmitted diseases in females. J Theor Biol 261: 100-106. DOI: 10.1016/j.jtbi.2009.06.028.
Hixson B, Taracena ML, Buchon N. 2021. Midgut epithelial dynamics are central to mosquitoes’ physiology and fitness, and to the transmission of vector-borne disease. Front Cell Infect Microbiol 11: 653156. DOI: 10.3389/fcimb.2021.653156.
Jones RT, Ant TH, Cameron MM, Logan JG. 2020. Novel control strategies for mosquito-borne diseases. Philos Trans R Soc B Biol Sci 378: 0802. DOI: 10.1098/rstb.2019.0802.
Kang D, Kim S, Cotten M, Sim C. 2020. Transcript assembly and quantification by RNA-Seq reveals significant differences in gene expression and genetic variants in mosquitoes of the Culex pipiens (Diptera: Culicidae) complex. J Med Entomol 58: 139-145. DOI: 10.1093/jme/tjaa167.
Kitching 2020. Biological Control of Mosquito Vectors: Past, Present, and Future. Insects, 7 040052.
Magalhaes T, Bergren N, Bennett S, Borland E, Hartman D, Lymperopoulos K, Sayre R, Borlee B, Campbell C, Foy B, Olson K, Blair C, Black W, Kading R. 2019. Induction of RNA interference to block Zika Virus replication and transmission in the mosquito Aedes aegypti. Insect Biochem Mol Biol 111: 103169. DOI: 10.1016/j.ibmb.2019.05.004.
Medeiros-Sousa A, Oliveira-Christe R, Camargo A, Scinachi C, Milani G, Urbinatti P, Natal D, Ceretti-Junior W, Marrelli M. 2020. Influence of water's physical and chemical parameters on mosquito (Diptera: Culicidae) assemblages in larval habitats in urban parks of São Paulo, Brazil. Acta Trop 205: 105-394. DOI: 10.1016/j.actatropica.2020.105394.
Monroe A, Olapeju B, Moore S, Hunter G, Merritt A, Okumu F, Babalola S. 2021. Improving malaria control by understanding human behaviour. Bull World Health Organ 99: 837-839. DOI: 10.2471/blt.20.285369.
Montoya LF, Alafo C, Martí-Soler H, Máquina M, Comiche K, Cuamba I, Munguambe K, Cator L, Aide P, Galatas B, Cuamba N, Marrenjo D, Saúte F, Paaijmans KP. 2022. Overlaying human and mosquito behavioral data to estimate residual exposure to host-seeking mosquitoes and the protection of bednets in a malaria elimination setting where indoor residual spraying and nets were deployed together. PLoS ONE 17 (9): e0270882. DOI: 10.1371/journal.pone.0270882.
Namgay R, Pemo D, Wangdi T, Phanitchakun T, Harbach RE, Somboon P. 2020. Molecular and morphological evidence for sibling species within Anopheles (Anopheles) lindesayi Giles (Diptera: Culicidae) in Bhutan. Acta Trop 207: 105455. DOI: 10.1016/j.actatropica.2020.105455.
O'Leary S, Adelman Z. 2020. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLoS Negl Trop Dis 14 (12): e0008971. DOI: 10.1371/journal.pntd.0008971.
Pryce J, Medley N, Choi L. 2022. Indoor residual spraying for preventing malaria in communities using insecticide?treated nets. Cochrane Database Syst Rev 1: CD012688. DOI: 10.1002/14651858.CD012688.pub3.
Rolff J, Johnston PR, Reynolds S. 2019. Complete metamorphosis of insects. Philos Trans R Soc B Biol Sci 374: 1783. DOI: 10.1098/rstb.2019.0063.
Santi V, Khaireh B, Chiniard T, Pradines B, Taudon N, Larréché S, Mohamed A, Laval F, Berger F, Gala F, Mokrane M, Benoît N, Malan L, Abdi A, Briolant S. 2021. Role of Anopheles stephensi mosquitoes in malaria outbreak, Djibouti, 2019. Emerg Infect Dis 27: 1697-1700. DOI: 10.3201/eid2706.204557.
Shaw R, Holmdahl I, Itoe M, Werling K, Marquette M, Paton D, Singh N, Buckee C, Childs L, Catteruccia F. 2020. Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential. bioRxiv 16 (12): e991356. DOI: 10.1101/2020.03.24.991356.
Shi C, Beller L, Deboutte W, Yinda KC, Delang L, Vega-Rúa A, Failloux AB, Matthijnssens J. 2019. Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics. Microbiome 7: 121. DOI: 10.1186/s40168-019-0734-2.
Suárez G, Udiani O, Allan B, Price C, Ryan S, Lofgren E, Coman A, Stone C, Gallos L, Fefferman N. 2020. A generic arboviral model framework for exploring trade-offs between vector control and environmental concerns. J Theor Biol 490: 110-161. DOI: 10.1016/j.jtbi.2020.110161.
Sumner K, Mangeni J, Obala A, Freedman E, Abel L, Meshnick S, Edwards J, Pence B, Prudhomme-O’Meara W, Taylor S. 2021. Impact of asymptomatic Plasmodium falciparum infection on the risk of subsequent symptomatic malaria in a longitudinal cohort in Kenya. eLife 10: e68812. DOI: 10.7554/eLife.68812.
Supriyono S, Soviana S, Novianto D, Musyaffa MF, Tan S, Hadi UK. 2022. Morphological characteristic of malaria vector Anopheles aconitus (Family: Culicidae) revealed by advanced light and scanning electron microscope. Biodiversitas 23: 3546-3552. DOI: 10.13057/biodiv/d230730.
Tallon AK, Hill SR, Ignell R. 2019. Sex and age modulate antennal chemosensory-related genes linked to the onset in the yellow-fever mosquito, Aedes aegypti. Sci Rep 9: 43. DOI: 10.1038/s41598-018-36550-6.
Velu RM, Kwenda G, Libonda L et al. 2021. Mosquito-borne viral pathogens detected in Zambia: A systematic review. Pathogens 10 (8): 1007. DOI: 10.3390/pathogens10081007.
Xia S, Ury J, Powell J. 2021. Increasing effectiveness of genetically modifying mosquito populations: Risk assessment of releasing blood-fed females. Am J Trop Med Hyg 104: 1895-1906. DOI: 10.4269/ajtmh.19-0729.