Effect of colchicine on chromosome number, morphological character and ß-carotene production of Amaranthus tricolor’s red giti cultivar

##plugins.themes.bootstrap3.article.main##

ADISTY ARINDYASWARI
NITA ETIKAWATI
SURATMAN

Abstract

Abstract. Arindyaswari A, Etikawati N, Suratman. 2021. Effect of colchicine on chromosome number, morphological character and ß-carotene production of Amaranthus tricolor’s red giti cultivar. Cell Biol Dev 5: 18-24. Amaranthus tricolor L. (bayam cabut or pulled spinach) is a vegetable consisting of ß-carotene, which acts as an antioxidant. Therefore, amaranths have potential as a functional food. ß-carotene production in a plant can be enhanced with mutation, one of which is mutation induction with colchicine. The aim of this research was to understand the effect of colchicine on chromosome number, morphological character and production of ß-carotene in A. tricolor of red giti cultivar and to find out which variation of treatment was optimum for producing polyploidy. This research was expected to give information about colchicine induced in amaranths, which had higher nutritional aspects and quality to be consumed. Amaranths seeds with colchicine treatment were done with various concentrations (0, 50, 100, 200, 500) ppm with soaking time variation of 6 and 12 hours, and then planted up to 40 days later. The number of chromosomes was analyzed by making preparation using the squash method, then observed under a microscope. Morphological characters were observed by measuring leaf length and width, stem diameter, and plant height. ß-carotene content was analyzed using a UV-Vis spectrophotometer with a wavelength of 450 nm. Data on leaf size, stem diameter, plant height, chromosome number, and ß-carotene content were analyzed using a one-way Analysis of Variance (ANOVA). The results obtained were amaranths with the treatment of concentration 50 ppm with 6 hours soaked in colchicine and concentration 100 ppm with 12 hours soaked in colchicine showed significant changes to the induction of colchicine, which had a polyploidy character with several 3n = 51. Amaranths with the treatment of concentration 100 ppm with 12 hours soaked in colchicine solution were more effective in increasing the size of length, width of amaranths leaf, stem diameter, and stem height, while treatment of concentration 50 ppm with 6 hours soaked in colchicine solution was effective in increasing ß-carotene production up to 908,40±116,800 mg/kg. Statistical analysis of each morphological character and ß-carotene production of colchicine-induced amaranths shows significant results.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Allum JF, Bringloe DH, Robert AV. 2007. Chromosome doubling in a Rosa rugosa Thunb. hybrid by exposure of in vitro nodes to oryzalin: the effects of node length, oryzalin concentration and exposure time. Plant Cell Rep 26: 1977-1984. DOI: 10.1007/s00299-007-0411-y.
Amaya DBG, Kimura M. 2004. Harvest plus handbook or carotenoid analysis (2rded). International Food Policy Research Institute (IFPRI) and International Center for Tropical Agriculture (CIAT), Washington DC and California.
Amin I, Norazaidah Y, Hainid KIE. 2006. Antioxidant activity and phenolic content of raw and blanched amaranthus species. Food Chem 94: 47-52. DOI: 10.1016/j.foodchem.2004.10.048.
Andini R, Sulaiman MI, Ohsawa R. 2002. Natural polyploidy in amaranths (Amaranthus spp.). AIP Conf Proc 2002 (1): 020053. DOI: 10.1063/1.5050149.
Ascough GD, Staden JV. 2008. Effectiveness of colchicine and oryzalin at inducing polyploidy in Watsonoa lepida N.E. Brown. Hort Sci 43 (7): 2248-2251. DOI: 10.21273/HORTSCI.43.7.2248.
Britton G, Liaaen-Jensen S, Pfander H. 2008. Carotenoids. Birkha, Basel. DOI: 10.1007/978-3-7643-7499-0.
Burun B, Emiroglu U. 2008. A comparative study on colchicine application methods in obtaining doubled haploids of tobacco (Nicotiana tabacum L.). Turk J Biol 32 (2): 105-111.
Carusoa I, Leporeb L, De Tommasib N, Piazb FD, Frusciantea L, Aversanoa R, Garramonea R, Carputo D. 2011. Secondary metabolite profile in induced tetraploids of wild Solanum commersonii Dun. Chem Biodivers 11: 2226-2237. DOI: 10.1002/cbdv.201100038.
Cazzonelli CI, Nisar N, Hussain D, Carmody ME, Pogson BJ. 2010. Biosynthesis and Regulation of Carotenoids in Plants—Micronutrients, Vitamins and Health Benefits. In: Pua E, Davey M. (eds). Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-04670-4_7.
Departemen Kesehatan Republik Indonesia (DEPKES). 1980. Materia Medika Indonesia Jilid IV. Jakarta: Direktorat Pengawasan Obat dan Makanan. Departemen Kesehatan Republik Indonesia. [Indonesian]
Dogra KS, Chauhan S, Jalal JS. 2015. Assesment of indian medicinal plants for the treatment of asthma. J Med Plant Res 9 (32): 851-862. DOI: 10.5897/JMPR2015.5890.
Eigsti OJ, Dustin Jr P. 1957. Colchicine. Iowa State College Press, USA.
Finkelstein Y, Aks SE, Hutson JR, Juurlink DN, Nguyen P, Dubnov-Raz G, Pollak U, Koren G, Bentur Y. 2010. Colchicine poisoning: The dark side of an ancient drug. Clin Toxicol Phil 48 (5): 407. DOI: 10.3109/15563650.2010.495348.
Friska M, Daryono BS. 2017. Derajat ploidi jahe merah (Zingiber officinale Roxb. var. rubrum Rosc.) hasil induksi dengan kolkisin. Biogenesis 5 (1): 49-54. DOI: 10.24252/bio.v5i1.3433. [Indonesian]
Goodwin TW. 1980. The Biochemistry of the Carotenoids: Plants. Chapman and Hall, New York. DOI: 10.1007/978-94-009-5860-9.
Grubben GJH. 2004. Amaranthus dubius Mart. ex Thell. (Internet) record from protabase. Grubben GJH, Denton OA. (eds). PROTA (Plant Resources of Tropical Africa), Wageningen, Netherlands.
Kehr AE. 1996. Woody plant polyploidy. Am Nurseryman 183: 38-47.
Limera C, Wang K, Xu L, Wang Y, Zhu X, Feng H, Sha Y, Gong Y, Liu L. 2016. Induction of autotetraploidy using colchicine and its identification in radish (Raphanus sativus L.). J Hortic Sci Biotechnol 91 (1): 63-70. DOI: 10.1080/14620316.2015.1110993.
Madhavi DL, Deshpande SS, Salunkhe DK. 1996. Food Antioxidants: Technological, Toxicological, Health Perspective. Marcel Dekker, New York. DOI: 10.1201/9781482273175.
Mohammed MT, Kadhim SM, Jassimand AMN. Abbas SI. 2015. Free radicals and human health. Intl J Innov Sci Res 4 (6): 218-223.
Nagahatenna DSK, Peiris SE. 2008. Modification of plant architecture of Hemidesmus indicus (L.) R. Br. (Iramusu) by in vitro colchicine treatment. Trop Agric Res 20: 234-242.
Phillip D, Hobe S, Paulsen H, Molnar P, Hashimoto H, Young AJ. 2002. The binding of xanthophylls to the bulk light-harvesting complex of photosystem II of higher plants. A speci?c requirement for carotenoids with a 3-hydroxy-ß-end group. J Biol Chem 28: 25160-25169. DOI: 10.1074/jbc.M202002200.
Putra KWE, Pitoyo A, Nugroho GD, Rai M, Setyawan AD. 2020. Review: Phytochemical activities of Ficus (Moraceae) in Java Island, Indonesia. Bonorowo Wetlands 10: 98-125. DOI: 10.13057/bonorowo/w100204.
Sen S, Chakraborty R, Sridhar C, Reddy YSR, De B. 2010. Free radicals, antioxidants, diseases and phytomedicines : current status and future prospect. Intl J Pharm Sci Rev Res 3 (1): 91-100. DOI: 10.5530/ax.2011.1.14.
Singh R. 2015. Medicinal plants: A review. J Plant Sci 3 (1-1): 50-55.
Sinha S, Karmakar K, Devani RS, Banerjee J, Sinha RK, Banerjee AK. 2016. Preparation of mitotic and meiotic metaphase chromosomes from young leaves and flower buds of Coccinia grandis. Bio-protocol 6 (7): e1771. DOI: 10.21769/BioProtoc.1771.
Song L, Liu S, Xiao J, He W, Zhou Y, Qin Q, Zhang C, Liu Y. 2012. Review: Polyploid organisms. Sci China Life Sci 55 (4): 301-311. DOI: 10.1007/s11427-012-4310-2.
Sundov Z, Nincevic Z, Gojanovic MD, Durdov MG, Jukica I, Hulina N, Tonkic A. 2005. Fatal colchicine poisoning by accidental ingestion of meadow saffron case report. Forensic Sci Intl 149: 253-256. DOI: 10.1016/j.forsciint.2004.06.034
Suryo H. 2007. Sitogenetika. Gadjah Mada University Press, Yogyakarta. [Indonesian]
Wong SP, Leong LP, Koh JHW. 2006. Antioxidant activities of aqueous extracts of selected plants. Food Chem 99: 775-783. DOI: 10.1016/j.foodchem.2005.07.058.