Factors influencing micropropagation and somatic embryogenesis of two cassava varieties, Kello and Qulle

##plugins.themes.bootstrap3.article.main##

ROZA BERHANU
TILEYE FEYISSA

Abstract

Abstract. Berhanu R, Feyissa T. 2020. Factors influencing micropropagation and somatic embryogenesis of two cassava varieties, Kello and Qulle. Cell Biol Dev 4: 71-81. Cassava (Manihot esculenta Crantz) is a perennial Euphorbiaceae shrub cultivated in the tropics, Africa, and Asia for its tuberous starchy roots. Lack of good-quality seed, low productivity and profit, virus and insect pests, high heterozygosity, low natural fertility, poor seed set, and seed germination limit its cultivation. The conventional breeding system is ill-equipped to address these issues. Therefore, additional biotechnological solutions are required to address the abovementioned issues. This research aimed to devise a method for obtaining a maximum number of shoots and morphologically sound in vitro materials by micropropagation, as well as to investigate the various parameters related to the micropropagation of the two cassava varieties, 'Kello' and 'Qulle.' The research also contains a somatic embryogenesis technique that is an optimal source of in vitro materials for large-scale multiplication. In this experiment, a Solid MS medium with different salt concentrations, sucrose concentrations, TDZ, a two-step procedure involving pre-soak of nodal explants in a liquid MS medium prior to culture on a solid MS medium, with different pH values, repeated subcultures, and somatic embryo induction on MS medium supplemented with 2,4-D alone and in combination with 2 µM CuSO4 were utilized. At a concentration of 0.2 mg/L TDZ, both 'Kello' and 'Qulle' exhibited the highest average number of shoots per explant and improved morphological properties of in vitro material. At a TDZ concentration of 0.2 mg/L, the two-step cultivation strategy produced the greatest mean number of shoots per plant for both kinds. The maximum mean number of shoots per explant was produced by 'Kello' at a medium salt strength of a quarter, but 'Qulle' required a medium salt strength of full. 'Kello' and 'Qulle' produced the greatest average number of shoots per explant at pH values of 5.6 and 6.6, respectively. At 0.15% sucrose, 'Kello' and 'Qulle' attained their highest mean values for all parameters. During somatic embryo induction, treatments with varying doses of 2,4-D generated FEC and somatic embryos, but the somatic embryos failed to progress through the globular stage. The micropropagation property of the two types through sequential subculturing suggested that repeated subculturing causes the in vitro materials to lose their multiplication property.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Aasim M, Khawar KM, Sancak C, Ozcan S. 2009. In vitro shoot regeneration of fenugreek (Trigonella foenumgraceum L.). Am-Eur J Sustain Agric 3: 135-138.
Atehnkeng J, Adetimirin VO, Ng SYC. 2006. Exploring the African cassava (Manihot esculenta Crantz) germplasm for somatic embryogenic competence. Afr J Biotechnol 5: 1324-1329.
Beyene D. 2009. Micropropagation of Selected Cassava Varieties (Manihot esculenta Crantz) from Meristem Culture. [Thesis]. Addis Ababa University. [Ethiopia]
Bhagwat B, Vieira LGE, Erickson LR. 1996. Stimulation of in vitro shoot proliferation from nodal explants of cassava by thidiazuron, benzyladenine and gibberellic acid. Plant Cell Tiss Org 46: 1-7. DOI: 10.1007/BF00039690.
Danso KE, Elegba W, Oduro V, Kpentey P. 2010. Comparative study of 2,4-D and picloram on friable embryogenic calli and somatic embryos development in cassava (Manihot esculenta Crantz). IJIB 10: 94-100.
Danso KE, Ford-Llyod BV. 2008. The effect of abscisic acid and sucrose on post-thaw embryogenic competence and subsequent plant recovery from embryogenic calli of cassava. Am-Eur J Agric Environ Sci 3: 663- 671.
Escobar RH, Munoz L, Tohme J, Roca W. 2001. A global cassava improvement plan. In: Taylor NJ, Ogbe F, Fauquet CM (eds). Fifth International Scientific Meeting of the Cassava Biotechnology Network. Danforth Plant Science Center, St Louis, Missouri, USA.
Fauquet CM. 2001. A global cassava improvement plan. In: Taylor NJ, Ogbe F, Fauquet CM (eds). Fifth International Scientific Meeting of the Cassava Biotechnology Network. Danforth Plant Science Center, St Louis, Missouri, USA.
Groll J, Mycock J, Gray VM. 2002. Effect of medium salt concentration on differentiation and maturation of somatic embryos of cassava (Manihot esculenta Crantz). Ann Bot-London 89: 645-648. DOI: 10.1093/aob/mcf095.
Gupta SD, Ibaraki Y. 2006. Plant Tissue Culture Engineering, Volume 6. Springer, Netherlands. DOI: 10.1007/978-1-4020-3694-1.
Hankoua BB, Ng SYC, Fawole I, Puonti-Kaerlas J, Pillay M, Dixon AGO. 2005. Regeneration of a wide range of African cassava genotypes via shoot organogenesis from cotyledons of maturing somatic embryos and conformity of the field-established regenerants. Plant Cell Tiss Org 82: 221-231. DOI: 10.1007/s11240-005-0514-5.
Hankoua BB, Taylor NJ, Ng SYC, Fawole I, Puonti-Kaerlas J, Padamanbhab C, Yadav JS, Fauquet CM, Dixon AGO, Fondong VN. 2006. Production of the first transgenic cassava in Africa via direct shoot organogenesis from friable embryogenic calli and germination of maturing somatic embryos. Afr J Biotechnol 5: 1700-1712.
Huetteman CA, Preece JE. 1993. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org 33: 105-119. DOI: 10.1007/BF01983223.
Konan NK, Sangwan RS, Sangwan-Norreel BS. 1994. Efficient in vitro shoot-regeneration systems in cassava (Manihot esculenta Crantz). Plant Breed 113: 227-236. DOI: 10.1111/j.1439-0523.1994.tb00727.x.
Konan NK, Schopke C, Carcamo R, Beachy RN, Fauquet C. 1997. An efficient mass propagation system for cassava (Manihot esculenta Crantz) based on nodal explants and axillary bud-derived meristems. Plant Cell Rep 16: 444-449. DOI: 10.1007/BF01092763.
Kozai T, Kubota C, Jeong BR. 1997. Environmental control for the large- scale production of plants through in vitro techniques. Plant Cell Tiss Org 51: 49-56. DOI: 10.1023/A:1005809518371.
Le BV, Anh BL, Soytong K, Danh ND, Hong LTA. 2007. Plant regeneration of cassava (Manihot esculenta Crantz) plants. J Agric Technol 3: 121-127.
Lestari T, Apriyadi R. 2017. Genetic potential of cassava biodiversity in Bangka Island, Indonesia. Cell Biol Dev 1: 41-45. DOI: 10.13057/cellbioldev/v010201.
Li HQ, Guo JY, Huang YW, Liang CY, Liu HX, Potrykus I, Puonti-Kaerlas J. 1998. Regeneration of cassava plants via shoot organogenesis. Plant Cell Rep 17: 410-414. DOI: 10.1007/s002990050416.
Mantell SH, Hugo SA. 1989. Effects of photoperiod, mineral medium strength, inorganic ammonium, sucrose and cytokinin on root, shoot and microtuber development in shoot cultures of Dioscorea alata L. and D. bulbifera L. yams. Plant Cell Tiss Org 16: 23-37. DOI: 10.1007/BF00044069.
Mathews H, Schopke C, Carcamo R, Chavarriaga P, Fauquet C, Beachy RN. 1993. Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Rep 12: 328-333. DOI: 10.1007/BF00237429.
Mbanaso ENA. 2008. Effect of multiple subcultures on Musa shoots derived from cassava starch-gelled multiplication medium during micropropagation. Afr J Biotechnol 7: 4491-4494.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15: 473-497. DOI: 10.1111/j.1399-3054.1962.tb08052.x.
Nhut DT, Le BV, Fukai S, Tanaka M, Van KTT. 2001. Effects of activated charcoal, explants size, explant position and sucrose concentration on plant and shoot regeneration of Lilium longiflorum via young stem culture. Plant Growth Regul 33: 59-65. DOI: 10.1023/A:1010701024963.
Nweke F. 2004. New Challenges in the Cassava Transformation in Nigeria and Ghana. Environment and Production Technology Division,Washington DC, USA International Food Policy Research Institute.
Raemakers CJJM, Amati M, Staritsky G, Jacobsen E, Visser RGF. 1993. cyclic somatic embryogenesis and plant regeneration in cassava. Ann Bot-London 71: 289-294. DOI: 10.1006/anbo.1993.1037.
Saelim L, Phansiri S, Netrphan S, Suksangpanomrung M, Narangajavana J. 2006. Optimization of In vitro cyclic somatic embryogenesis and regeneration of the Asian cultivars of cassava (Manihot esculenta Crantz) for genetic manipulation system. Glob J Biotechnol Biochem 1: 7-15.
Sajid ZA, Aftab F. 2009. Effect of thidiazuron (TDZ) on In Vitro micropropagati- n of Solanum tuberosum L. Cvs. Desiree and Cardinal. Pak J Bot 41: 1811-1815.
Santana MA, Romay G, Matehus J, Vicente-Villardon JL, Demey JR. 2009. A simple and low-cost strategy for micropropagation of cassava (Manihot esculenta Crantz). Afr J Biotechnol 8 (16): 3789-3897.
Siddique I, Anis M. 2006. Thidiazuron induced high frequency shoot bud formation and plant regeneration from cotyledonary node explants of Capsicum annum L. Indian J Biotechnol 5: 303-308.
Singh SK, Syamal MM. 2001. A short pre-culture soak in thidiazuron or forchlorfenuron improves axillary shoot proliferation in rose micropropagation. Sci Hortic-Amsterdam 91: 169-177. DOI: 10.1016/S0304-4238(00)00267-3.
Smith MK, Biggs BJ, Scott KJ. 1986. In vitro propagation of cassava (Manihot esculenta Crantz). Plant Cell Tiss Org 6: 221-228. DOI: 10.1007/BF00040007.
Stamp JA. 1987. Somatic embryogenesis in cassava: The anatomy and morphology of the regeneration process. Ann Bot-London 59: 451-459. DOI: 10.1093/oxfordjournals.aob.a087334.
Sudarmonowati E, Henshaw GG. 1996. The use of picloram and dicamba to induce somatic embryogenesis in cassava. Annales Bogorienses 4: 27-36.