Diversity of plant-parasitic nematodes in potato fields at different altitudes in Probolinggo District, East Java, Indonesia

##plugins.themes.bootstrap3.article.main##

ANKARDIANSYAH PANDU PRADANA
GEBY NANDITA CAHYANING PRATIWI
WAGIYANA

Abstract

Abstract. Prada AP, Pratiwi GNC, Wagiyana. 2022. Diversity of plant-parasitic nematodes in potato fields at different altitudes in Probolinggo District, East Java, Indonesia. Cell Biol Dev 6: 61-67. Plant parasitic nematodes (PPNs) are microorganisms sensitive to environmental conditions. Therefore, plant parasitic nematode diversity in a field may affect the decision of effective management tactics. This study aimed to assess the diversity of plant parasitic nematodes in potato fields at three different altitudes. The study was carried out in Probolinggo District, East Java, Indonesia. The sampling area was divided into three groups based on altitude variations, namely 1,008 m asl., 1,413 m asl., and 1,875 m asl. Soil samples were collected randomly in a zigzag pattern. Samples were collected from 20 points across each field at a depth of 20-30 cm below the soil surface. Each sub-sample included up to 500 g of soil. The white head tray method extracted nematodes from 500 g of soil from each subsample. After characterizing the extracted nematodes, the absolute density and dominance values were determined. The results revealed variations in the three areas with different altitudes. The total number of plant-parasitic nematodes (PPN) discovered on the field at an altitude of 1,008 m asl. was 57.00 ± 16.43. Furthermore, at an altitude of 1,413 m asl., the total number of PPNs discovered is 41.67 ± 10.98. The total number of nematodes on the field at an altitude of 1,875 m asl. was 50.50 ± 12.60. The findings of this study also indicated that Meloidogyne sp. was the genus with the highest population on the field, at an altitude of 1,008 m asl. On the other hand, Pratylenchus sp. is the most abundant nematode in the field between 1,413 and 1,875 m asl. An identical situation also occurred with the nematode dominance values in the three fields studied.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Aprilyani A, Supramana S, Suastika G. 2015. Meloidogyne incognita penyebab umbi berbintil pada kentang di beberapa sentra produksi kentang di Jawa. J Fitopatologi Indonesia 11 (5): 143-143. DOI: 10.14692/jfi.11.5.143. [Indonesian]
Atandi JG, Haukeland S, Kariuki GM, Coyne DL, Karanja EN, Musyoka MW, Fiaboe KK, Bautze D, Adamtey N. 2017. Organic farming provides improved management of plant parasitic nematodes in maize and bean cropping systems. Agric Ecosyst Environ 247: 265-272. DOI: 10.1016/j.agee.2017.07.002.
Barker K, Olthof TH. 1976. Relationships between nematode population densities and crop responses. Ann Rev Phytopathol 14(1): 327-353. DOI: 10.1146/annurev.py.14.090176.001551.
Bell N, Watson R. 2001. Optimising the Whitehead and Hemming tray method to extract plant parasitic and other nematodes from two soils under pasture. Nematol 3 (2): 179-185. DOI: 10.1163/156854101750236312.
Bongers T, Ferris H. 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14 (6): 224-228. DOI: 10.1016/S0169-5347(98)01583-3.
Bouwman L, Arts W. 2000. Effects of soil compaction on the relationships between nematodes, grass production and soil physical properties. Appl Soil Ecol 14 (3): 213-222. DOI: 10.1016/S0929-1393(00)00055-X.
Bucki P, Qing X, Castillo P, Gamliel A, Dobrinin S, Alon T, Braun Miyara S. 2020. The genus Pratylenchus (Nematoda: Pratylenchidae) in Israel: From taxonomy to control practices. Plants 9 (11): 1475. DOI: 10.3390/plants9111475.
Chitwood DJ. 2003. Research on plant?parasitic nematode biology conducted by the United States Department of Agriculture–Agricultural Research Service. Pest Manag Sci 59 (6?7): 748-753. DOI: 10.1002/ps.684.
Collange B, Navarrete M, Peyre G, Mateille T, Tchamitchian M. 2011. Root-knot nematode (Meloidogyne) management in vegetable crop production: The challenge of an agronomic system analysis. Crop Prot 30 (10): 1251-1262. DOI: 10.1016/j.cropro.2011.04.016.
Coyne DL, Cortada L, Dalzell JJ, Claudius-Cole AO, Haukeland S, Luambano N, Talwana H. 2018. Plant-parasitic nematodes and food security in Sub-Saharan Africa. Ann Rev Phytopathol 56: 381-403. DOI: 10.1146/annurev-phyto-080417-045833.
Ebone LA, Kovaleski M, Deuner CC. 2019. Nematicides: History, mode, and mechanism action. Plant Sci Today 6 (2): 91-97. DOI: 10.14719/pst.2019.6.2.468.
Elling AA. 2013. Major emerging problems with minor Meloidogyne species. Phytopathol 103 (11): 1092-1102. DOI: 10.1094/PHYTO-01-13-0019-RVW.
Gaidashova S, Okech S, Van den Berg E, Marais M, Gatarayiha C, Ragama P. 2004. Plant-parasitic nematodes in banana-based farming systems in Rwanda: Species profile, distribution and abundance. African Plant Prot 10 (1): 27-33.
Huang X-F, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92 (4): 267-275. DOI: 10.1139/cjb-2013-0225.
?mren M. 2018. Determination of plant parasitic nematodes in potato growing areas in Bolu Province. Intl J Agri Wildlife Sci 4 (2): 26-32. DOI: 10.24180/ijaws.404959.
Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla?López R, Palomares?Rius JE, Wesemael WM. 2013. Top 10 plant?parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14 (9): 946-961. DOI: 10.1111/mpp.12057.
Jones LM, Koehler AK, Trnka M, Balek J, Challinor AJ, Atkinson HJ, Urwin PE. 2017. Climate change is predicted to alter the current pest status of Globodera pallida and G. rostochiensis in the United Kingdom. Global Change Biol 23 (11): 4497-4507. DOI: 10.1111/gcb.13676.
Jones M, Fosu?Nyarko J. 2014. Molecular biology of root lesion nematodes (Pratylenchus spp.) and their interaction with host plants. Ann Appl Biol 164 (2): 163-181. DOI: 10.1111/aab.12105.
Kandji ST, Ogol CK, Albrecht A. 2001. Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Appl Soil Ecol 18 (2): 143-157. DOI: 10.1016/S0929-1393(01)00157-3.
Kumar V, Khan MR, Walia R. 2020. Crop loss estimations due to plant-parasitic nematodes in major crops in India. Natl Acad Sci Lett 43 (5): 409-412. DOI: 10.1007/s40009-020-00895-2.
Kurabachew H, Ayana G. 2017. Bacterial wilt caused by Ralstonia solanacearum in Ethiopia: status and management approaches: a review. Intl J Phytopathol 5(3): 107-119. DOI: 10.33687/phytopath.005.03.1829.
Lareen A, Burton F, Schäfer P. 2016. Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90 (6): 575-587. DOI: 10.1007/s11103-015-0417-8.
Liu CA, Siddique KH. 2015. Does plastic mulch improve crop yield in semiarid farmland at high altitude? Agron J 107 (5): 1724-1732. DOI: 10.2134/agronj15.0052.
Majeed A, Muhammad Z. 2018. Potato production in Pakistan: Challenges and prospective management strategies–a review. Pak J Bot 50 (5): 2077-2084.
Maleita C, Esteves I, Cardoso J, Cunha M, Carneiro R, Abrantes I. 2018. Meloidogyne luci, a new root?knot nematode parasitizing potato in Portugal. Plant Pathol 67 (2): 366-376. DOI: 10.1111/ppa.12755.
Mateille T, Tavoillot J, Martiny B, Fargette M. 2014. Importance of soil characteristics for plant-parasitic nematode communities in European coastal foredunes. Eur J Soil Biol 64: 53-60. DOI: 10.1016/j.ejsobi.2014.08.002.
Mirsam H, Muis A, Nonci N. 2020. The density and diversity of plant-parasitic nematodes associated with maize rhizosphere in Malakaji Highland, South Sulawesi, Indonesia. Biodiversitas 21 (6): 2654-2661. DOI: 10.13057/biodiv/d210637.
Munif A, Butarbutar E, Pradana AP, Yousif AI. 2022. Plant-parasitic nematodes associated with common horticultural weeds. Pak J Phytopathol 34 (1): 1-11. DOI: 10.33866/phytopathol.034.01.0613.
Mwangi J, Kariuki G, Waceke J, Grundler F. 2015. First report of Globodera rostochiensis infesting potatoes in Kenya. New Dis Rep 31: 18-18. DOI: 10.5197/j.2044-0588.2015.031.018.
Narula N, Kothe E, Behl RK. 2012. Role of root exudates in plant-microbe interactions. J Appl Bot Food Qual 82 (2): 122-130. DOI: 10.1002/9781119246329.ch10.
Ney L, Franklin D, Mahmud K, Cabrera M, Hancock D, Habteselassie M, Newcomer Q, Dahal S, Subedi A. 2019. Sensitivity of nematode community analysis to agricultural management practices and inoculation with local effective microorganisms in the Southeastern United States. Soil Sys 3 (2): 41. DOI: 10.3390/soilsystems3020041.
Nowak A, Nowak S, Nobis M, Nobis A. 2015. Crop type and altitude are the main drivers of species composition of arable weed vegetation in Tajikistan. Weed Res 55 (5): 525-536. DOI: 10.1111/wre.12165.
Nowicki M, Foolad MR, Nowakowska M, Kozik EU. 2012. Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding. Plant Dis 96 (1): 4-17. DOI: 10.1094/PDIS-05-11-0458.
Nusbaum C, Ferris H. 1973. The role of cropping systems in nematode population management. Ann Rev Phytopathol 11 (1): 423-440. DOI: 10.1146/annurev.py.11.090173.002231.
Nyang’au D, Atandi J, Cortada L, Nchore S, Mwangi M, Coyne D. 2021. Diversity of nematodes on banana (Musa spp.) in Kenya linked to altitude and with a focus on the pathogenicity of Pratylenchus goodeyi. Nematol 24 (2): 137-147. DOI: 10.1163/15685411-bja10119.
Onkendi EM, Kariuki GM, Marais M, Moleleki LN. 2014. The threat of root?knot nematodes (Meloidogyne spp.) in Africa: A review. Plant Pathol 63 (4): 727-737. DOI: 10.1111/ppa.12202.
Orlando V, Grove IG, Edwards SG, Prior T, Roberts D, Neilson R, Back M. 2020. Root?lesion nematodes of potato: current status of diagnostics, pathogenicity and management. Plant Pathol 69 (3): 405-417. DOI: 10.1111/ppa.13144.
Phillips WS, Kieran SR, Zasada IA. 2015. The relationship between temperature and development in Globodera ellingtonae. J Nematol 47 (4): 283-289.
Ralmi N, Khandaker MM, Mat N. 2016. Occurrence and control of root knot nematode in crops: A review. Aust J Crop Sci 11 (12): 1649-1654. DOI: 10.21475/ajcs.2016.10.12.p7444.
Riley IT, Wouts W. 2001. Pratylenchus and Radopholus species in agricultural soils and native vegetation in Southern Australia. Trans R Soc S Aust 125 (2): 147-153.
Rusinque L, Nóbrega F, Cordeiro L, Serra C, Inácio ML. 2021. First detection of Meloidogyne luci (Nematoda: Meloidogynidae) parasitizing potato in the Azores, Portugal. Plants 10 (1): 99. DOI: 10.3390/plants10010099.
Sarah JL. 1989. Nematological review: Banana nematodes and their control in Africa. Nematropica 19 (2): 199-216.
Shunthirasingham C, Gouin T, Lei YD, Ruepert C, Castillo LE, Wania F. 2011. Current?use pesticide transport to Costa Rica's high?altitude tropical cloud forest. Environ Toxicol Chem 30 (12): 2709-2717. DOI: 10.1002/etc.671.
Silva JCPd, Medeiros FHVd, Campos VP. 2018. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Sci Technol 28 (5): 423-445. DOI: 10.1080/09583157.2018.1460316.
Singh SK, Hodda M, Ash G, Banks N. 2013. Plant?parasitic nematodes as invasive species: characteristics, uncertainty and biosecurity implications. Ann Appl Biol 163 (3): 323-350. DOI: 10.1111/aab.12065.
Sun X, Zhang X, Zhang S, Dai G, Han S, Liang W. 2013. Soil nematode responses to increases in nitrogen deposition and precipitation in a temperate forest. PloS ONE 8 (12): e82468. DOI: 10.1371/journal.pone.0082468.
Syafii DS, Lisnawita L, Hasanudin H. 2018. Sebaran nematoda sista kentang di Wonosobo dan Banjarnegara, Jawa Tengah. J Fitopatologi Indonesia. 14 (4): 111-119. DOI: 10.14692/jfi.14.4.111. [Indonesian]
Tapia-Vázquez I, Montoya-Martínez AC, los Santos-Villalobos D, Ek-Ramos MJ, Montesinos-Matías R, Martínez-Anaya C. 2022. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: biology, current control strategies, and perspectives. World J Microbiol Biotechnol 38 (2): 1-18. DOI: 10.1007/s11274-021-03211-2.
Trudgill D, Phillips M, Elliott M. 2014. Dynamics and management of the white potato cyst nematode Globodera pallida in commercial potato crops. Ann Appl Biol 164 (1): 18-34. DOI: 10.1111/aab.12085.
Van Zyl S, Vivier M, Walker MA. 2012. Xiphinema index and its relationship to grapevines: A review. South African J Enol Vitic 33 (1): 21-32. DOI: 10.21548/33-1-1302.
Vestergård M. 2019. Trap crops for Meloidogyne hapla management and its integration with supplementary strategies. Appl Soil Ecol 134: 105-110. DOI: 10.1016/j.apsoil.2018.10.012.
Whitehead A. 1969. The distribution of root-knot nematodes (Meloidogyne spp.) in tropical Africa. Nematologica 15 (3): 315-333. DOI: 10.1163/187529269X00362.
Widiyanto W. 2016. Perkembangan Nematoda Puru Akar Meloidogyne incognita pada 10 jenis Gulma. [Thesis]. Universitas Gadjah Mada, Yogyakarta. [Indonesian]
Williams A, de Vries FT. 2020. Plant root exudation under drought: Implications for ecosystem functioning. New Phytol 225 (5): 1899-1905. DOI: 10.1111/nph.16223.
Yoder M, De Ley IT, King IW, Mundo-Ocampo M, Mann J, Blaxter M, Poiras L, De Ley P. 2006. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematolo 8 (3): 367-376. DOI: 10.1163/156854106778493448.
Zhang Y, Ji L, Yang L. 2021. Abundance and diversity of soil nematode community at different altitudes in cold-temperate montane forests in northeast China. Glob Ecol Cons 29: e01717. DOI: 10.1016/j.gecco.2021.e01717.