Seed phenotypic variations in cowpea, Vigna unguiculata, from selected open markets in Edo State, Nigeria

##plugins.themes.bootstrap3.article.main##

BECKLEY IKHAJIAGBE
MATTHEW CHIDOZIE OGWU
ZIPPORAH EMILOMO OMAGE

Abstract

Abstract. Ikhajiagbe B, Ogwu MC, Omage ZE. 2023. Seed phenotypic variations in cowpea, Vigna unguiculata, from selected open markets in Edo State, Nigeria. Biodiversitas 24: 89-102. Understanding the phenotypic variation of Vigna unguiculata (L.) Walp. (cowpea) can facilitate sustainable utilization and support protein security goals. This study aimed to investigate the existence and level of seed phenotypic variations within and among three local cultivars of cowpea, namely Ife Brown, Ekpoma Local, and Sokoto White in Edo State, Southern Nigeria. This information will assist utilization, conservation planning, and breeding efforts. Key qualitative and quantitative characters were collected and analyzed using parametric and non-parametric tests. Results showed no variations in the qualitative parameters among the seeds of cvs. Ekpoma Local and Sokoto White. However, cv. Ife Brown varied significantly, particularly in seed color. Significant variations (P>0.05) existed in the seed quantitative parameters. The seed volume was the most diverse, with a coefficient of variation of 13.15-14.14. Further, the seed volume of cv. Sokoto White was the most diverse. Regarding overall variation, the group mean sum of squares for cv. Ife Brown was 146.95, compared to 26.18 and 31.23 for cvs. Ekpoma Local and Sokoto White, respectively, indicate that cv. Ife Brown was the most likely variable cultivar. There is a need for molecular characterization to ascertain the diversity observed in the cowpea seeds.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Adewale BD, Adeigbe OO, Aremu CO. 2011. Genetic distance and diversity among some cowpea (Vigna unguiculata L. Walp) genotypes. Intl J Res Plant Sci 1 (2): 9-14.
Admas S, Tesfaye K, Haileselassie T, Shiferaw E, Flynn KC. 2021. Phenotypic variability of chickpea (Cicer arietinum L) germplasm with temporally varied collection from the Amhara regional state, Ethiopia. Cogent Food Agric 7 (1): 1896117. DOI: 10.1080/23311932.2021.1896117.
Aiwansoba RO, Ogwu MC, Osawaru ME. 2019. Assessing the relatedness of Abelmoschus accessions using morphological characters. J Trop Biol Conserv 16: 193-207.
Balkaya A, Yanmaz R, Özbakir M. 2009. Evaluation of variation in seed characters of Turkish winter squash (Cucurbita maxima) populations. N Z J Crop Hortic Sci 37 (3): 167-178. DOI: 10.1080/01140670909510262.
Bhatt A, Gairola S, El-Keblawy AA. 2016. Seed colour affects light and temperature requirements during germination in two Lotus species (Fabaceae) of the Arabian subtropical deserts. Rev Biol Trop 64 (2): 483. DOI: 10.15517/rbt.v64i2.18575.
Chime AO, Aiwansoba RO, Eze CJ, Osawaru ME, Ogwu MC. 2017. Phenotypic characterization of tomato Solanum lycopersicum L. cultivars from Southern Nigeria using morphology. Malaya J Biosci 4 (1): 30-38.
Conti F, Proietti E, Ogwu MC, Gubellini L, Bartolucci F. 2019. Re-evaluation of Senecio apenninus (Asteraceae, Senecioneae). Willdenowia 49 (3): 329-341. DOI: 10.3372/wi.49.49304.
Dorvlo IK, Amenorpe G, Amoatey HM, Amiteye S, Kutufam JT, Afutu E, Asare-Bediako E, Darkwa AA. 2022. Improvement in cowpea variety Videza for traits of extra earliness and higher seed yield. Heliyon 8 (12): e12059. DOI: 10.1016/j.heliyon.2022.e12059.
Edet OU, Ishii T. 2022. Cowpea speed breeding using regulated growth chamber conditions and seeds of oven-dried immature pods potentially accommodates eight generations per year. Plant Methods 18 (1): 106. DOI: 10.1186/s13007-022-00938-3.
Egbadzor KF, Yeboah M, Gamedoagbao DK, Offei SK, Danquah EY, Ofori K. 2014. Inheritance of seed coat colour in cowpea (Vigna unguiculata (L.) Walp). Intl J Plant Breed Genet 8 (1): 35-43. DOI: 10.3923/ijpbg.2014.35.43.
Fatokun CA, Menancio-Hautea DI, Danesh D, Young ND. 1992. Evidence for orthologous seed weight genes in cowpea and mung bean based on RFLP mapping. Genetics 132 (3): 841-846. DOI: 10.1093/genetics/132.3.841.
Gerrano AS, Thungo ZG, Mavengahama S. 2022. Phenotypic description of elite cowpea (Vigna ungiculata L. Walp) genotypes grown in drought-prone environments using agronomic traits. Heliyon 8 (2): e08855. DOI: 10.1016/j.heliyon.2022.e08855.
Herniter IA, Muñoz-Amatriaín M, Close TJ. 2020. Genetic, textual, and archeological evidence of the historical global spread of cowpea (Vigna unguiculata (L.) Walp.). Legum Sci 2020 (2): e57. DOI: 10.1002/leg3.57.
Ifie JE, Anoliefo GO, Ikhajiagbe B. 2019. Growth and yield assessment of cowpea (Vigna unguiculata L.) genotypes to elevated iron levels in a ferruginous ultisol. Asian J Biol Sci 12 (3): 506-517. DOI: 10.3923/ajbs.2019.506.517.
Ifie JE, Ifie-Etumah S, Ikhajiagbe B. 2020. Physiological and biochemical responses of selected cowpea (Vigna unguiculata (L.) Walp.) accessions to iron toxicity. Acta Agric Slov 115 (1): 25-38. DOI: 10.14720/aas.2020.115.1.969.
Ikhajiagbe B, Ogwu MC, Olise FO, Odozi EB, Adekunle IJ, Omage ZE. 2020. The place of neglected and underutilized legumes in human nutrition and protein security in developing economies. Crit Rev Food Sci Nutr 62 (14): 3930-3938. DOI: 10.1080/10408398.2020.1871319.
Ikhajiagbe B, Ohanmu EO, Iguobaro MO. 2019. Competition between cowpea (TVU-180) and selected local grasses abundant in a typical ultisol in Benin City, Nigeria. Asian J Biol Sci 12: 73-80 DOI: 10.3923/ajbs.2019.73.80.
International Board for Plant Genetic Resources. 1983. Descriptor for cowpea. https://www.bioversityinternational.org/e-library/publications/ detail/descriptors-for-cowpea/
Iseghohi IO, Adesoye AI, Oludare DA, Agunbiade FV, Unachukwu N. 2019. Assessment of genetic diversity of selected cowpea landraces from Nigeria based on simple sequence repeat markers. Niger J Biotechnol 36 (2): 33-44. DOI: 10.4314/njb.v36i2.5.
Jayawardhane J, Goyali JC, Zafari S, Igamberdiev AU. 2022. The Response of cowpea (Vigna unguiculata) plants to three abiotic stresses applied with increasing intensity: Hypoxia, salinity, and water deficit. Metabolites 12 (1): 38. DOI: 10.3390/metabo12010038.
Lazaridi E, Bebeli PJ. 2023. Cowpea constraints and breeding in Europe. Plants 12 (6): 1339. DOI: 10.3390/plants12061339.
Lo S, Muñoz-Amatriaín M, Hokin SA, Cisse N, Roberts PA, Farmer AD, Xu S, Close TJ. 2019. A genome-wide association and meta-analysis reveal regions associated with seed size in cowpea (Vigna unguiculata (L.) Walp). Theor Appl Genet 132 (11): 3079-3087. DOI: 10.1007/s00122-019-03407-z.
Long J, Zhang J, Zhang X, Wu J, Chen H, Wang P, Wang Q, Du C. 2020. Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm resources in Chongqing, evidenced by morphological characterization. Front Genet 11: 697. DOI: 10.3389/fgene.2020.00697.
Magashi AI, Shawai RS, Muhammad A, Ibrahim MB. 2019. Genetic variability studies of some quantitative traits in cowpea (Vigna unguiculata L. (Walp)) under water stress. Afr J Plant Sci 13 (2): 25-33. DOI: 10.5897/AJPS2018.1691.
Mavi K. 2010. The relationship between seed coat colour and seed quality in watermelon Crimson sweet. Hortic Sci 37 (2): 62-69. DOI: 10.17221/53/2009-HORTSCI.
Mekonnen TW, Gerrano AS, Mbuma NW, Labuschagne MT. 2022. Breeding of vegetable cowpea for nutrition and climate resilience in Sub-Saharan Africa: Progress, opportunities, and challenges. Plants 11 (12): 1583. DOI: 10.3390/plants11121583.
Menssen M, Linde M, Otunga OE, Abukutsa-Onyango M, Dinssa FF, Winkelmann T. 2017. Genetic and morphological diversity of cowpea (Vigna unguiculata (L.) Walp.) entries from East Africa. Sci Hortic 226: 268-276. DOI: 10.1016/j.scienta.2017.08.003.
Mitchell J, Johnston IG, Bassel GW. 2016. Variability in seeds: Biological, ecological, and agricultural implications. J Exp Bot 68 (4): 809-817. DOI: 10.1093/jxb/erw397.
Nkhoma N, Shimelis H, Laing MD, Shayanowako A, Mathew I. 2020. Assessing the genetic diversity of cowpea (Vigna unguiculata (L.) Walp.) germplasm collections using phenotypic traits and SNP markers. BMC Genet 21 (1): 110. 10.1186/s12863-020-00914-7.
Obongodot NU, Osawaru ME, Ogwu MC. 2022. Morpho-genetic characterization of Abelmoschus Moench. accessions. J Agric Prod 3 (2): 110-123. 10.56430/japro.1166934.
Odeseye AO, Amusa NA, Ijagbone IF, Aladele SE, Ogunkanmi LA. 2018. Genotype by environment interactions of twenty accessions of cowpea (Vigna unguiculata (L.) Walp.) across two locations in Nigeria. Ann Agric Sci 16: 481-489. DOI: 10.1016/j.aasci.2018.03.001.
Ogwu MC, Onosigbere-Ohwo U, Osawaru ME. 2018. Morphological characterization of okra (Abelmoschus (Medik.)) accessions. Makara J Sci 22 (2): 67-76. DOI: 10.7454/mss.v22i2.9126.
Ogwu MC. 2019. Towards Sustainable Development in Africa: The challenge of urbanization and climate change adaptation. In: Cobbinah PB, Addaney M (eds). The Geography of Climate Change Adaptation in Urban Africa. Springer Nature, Cham, Switzerland. DOI: 10.1007/978-3-030-04873-0_2.
Ogwu MC. 2020. Value of Amaranthus (L.) species in Nigeria. In: Waisundara V (eds). Nutritional Value of Amaranth. IntechOpen, UK. DOI: 10.5772/intechopen.86990.
Ogwu MC. 2023. Local food crops in Africa: Sustainable utilization, threats, and traditional storage strategies. In: Izah SC, Ogwu MC (eds). Sustainable Utilization and Conservation of Africa’s Biological Resources and Environment. Springer, Singapore. DOI: 10.1007/978-981-19-6974-4_13.
Ohanmu EO, Ikhajiagbe B, Anoliefo GO. 2019a. Cowpea emergence response to cadmium stress. Res J Chem Sci 9 (3): 17-23.
Ohanmu EO, Ikhajiagbe B, Anoliefo GO. 2019b. Evaluation of biochemical, photosynthetic and physiological characteristics of cowpea (Vigna unguiculata L. Walp) accessions to cadmium stress. Studia Univ Vasile Goldi? Arad Ser ?tiin?ele Vie?ii 29 (1): 21-29.
Ortiz R. 1998. Cowpeas from Nigeria: A silent food revolution. Outlook Agric 27 (2): 125-128. DOI: 10.1177/003072709802700210.
Osawaru ME, Ogwu MC, Chime AO, Osifo E. 2012. Morphological characterization of fruits and protein profiling of nine accessions of cultivated Okra species in Nigeria. Biol Environ Sci J Trop 6 (1): 156-167.
Osawaru ME, Ogwu MC, Imarhiagbe O. 2013. Agro-morphological characterization of some Nigerian Corchorus (L.) species. Biol Environ Sci J Trop 10 (4): 148-158. DOI: 10.4314/bajopas.v6i2.15.
Osawaru ME, Ogwu MC, Omologbe J. 2014. Characterization of three Okra (Abelmoschus (L.)) Accessions using morphology and SDS-PAGE for the basis of conservation. Egypt Acad J Biol Sci 5 (1): 55-65. DOI: 10.21608/EAJBSH.2014.16828.
Oyenuga VA. 1968. Nigerian foods and their feeding stuff: their chemistry and nutritive values. 3rd Revised Edition. Ibadan University Press, Ibadan.
Salgotra RK, Stewart CN Jr. 2022. Genetic augmentation of legume crops using genomic resources and genotyping platforms for nutritional food security. Plants 11 (14): 1866. DOI: 10.3390/plants11141866.
Simion T. 2018. Breeding cowpea Vigna unguiculata L. Walp for quality traits. Ann Rev Res 3 (2): 1-7. DOI: 10.19080/ARR.2018.03.555609.
Tetsuka T, Uchino A. 2005. Variation in seed shape and husk color in Japanese native cultivars of common buckwheat (Fagopyrum esculentum Moench). Plant Prod Sci 8 (1): 60-64. DOI: 10.1626/pps.8.60.
Tiryaki GY, Cil A, Tiryaki I. 2016. Revealing seed coat colour variation and their possible association with seed yield parameters in common Vetch (Vicia sativa L.). Intl J Agron 2016: 1804108. DOI: 10.1155/2016/1804108.
Zuluaga DL, Lioi L, Delvento C, Pavan S, Sonnante G. 2021. Genotyping-by-sequencing in Vigna unguiculata landraces and its utility for assessing taxonomic relationships. Plants 10 (3): 509. DOI: 10.3390/plants10030509.