Effect of algal fertilization on the biochemical and phytochemical composition and antioxidant activity of tomato and pepper plants

##plugins.themes.bootstrap3.article.main##

SAID BAROUD
SAIDA TAHROUCH
ABDELHAKIM HATIMI

Abstract

Abstract. Baroud S, Tahrouch S, Hatimi A. 2024. Effect of algal fertilization on the biochemical and phytochemical composition and antioxidant activity of tomato and pepper plants. Cell Biol Dev 8: 36-44. The aim of our study was to evaluate the effect of three brown algae, Bifurcaria bifurcata, Cystoseira gibraltarica and Fucus spiralis, on the biochemical and phytochemical composition of tomato and pepper plants. The algae were applied in two forms and at different concentrations: aqueous extract (0.5%, 1% and 2%) and amendment (C1, C2 and C3). The aqueous extract of B. bifurcata with its three concentrations showed the highest protein content in tomato leaves (217, 200 and 196.9 mg/g DM) and all aqueous extracts of F. spiralis showed high levels of total sugars (83.13, 83.08 and 75.38 mg/g DM). For pepper, the highest protein content was recorded for the 1% C. gibraltarica aqueous extract (196.57 mg/g DM). High levels of total sugars in pepper leaves were induced by the 2% C. gibraltarica aqueous extract (52.22 mg/g DM). Furthermore, the photosynthetic pigment content of the leaves of both vegetable crops (tomato and pepper) was generally significantly affected by the presence of aqueous extracts and amendments of the three brown algae. In addition, tomato and pepper plants treated with aqueous extracts (spraying) or by amendment, showed a significant improvement in all phytochemical parameters and antioxidant activity. These three algae proved to be good candidates for the effective development of biostimulants to improve biochemical composition and phytochemical parameters. This study could provide important information on the identification and use of Moroccan algal resources in agriculture.

2017-01-01

##plugins.themes.bootstrap3.article.details##

References
Alghamdi A. 2017. Oligosaccharides as the Effective Components of Ascophyllum nodosum Extract on Plant Growth and Plant Resistance Against Chilling Stress in Soybean (Glycine max) Seedlings. [Master's Thesis]. Saint Mary's University, Halifax, NS, Canada.
Ali N, Farrell A, Ramsubhag A, Jayaraman J., 2016. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. J Appl Phycol 28: 1353-1362. DOI: 10.1007/s10811-015-0608-3.
Anantharaj M, Venkatesalu V. 2001. Effect of seaweed liquid fertilizer on Vigna catajung. Seaweed Res Utiln 23 (1/2): 33-39.
Andary C. 1990. Documentation Chimique et Pharmaceutique pour l’AMM du MERALOPS Comprimés. Laboratoire Allergan-Dulcis, Monaco, France.
Ahmed ZB, Yousfi M, Viaene J, Dejaegher B, Demeyer K, Mangelings D, Heyden YV. 2016. Determination of optimal extraction conditions for phenolic compounds from Pistacia atlantica leaves using the response surface methodology. Anal Methods 8 (31): 6107-6114. DOI: 10.1039/C6AY01739H.
Ashok V, Vijayanand N, Rathinavel S. 2004. Bio-fertilizing efficiency of seaweed liquid extract of Hydroclathrus clathratus on Sorghum vulgare. Seaweed Res Utiln 26: 181-186.
Boizot N, Charpentier JP. 2006. Méthode rapide d’évaluation du contenu en composésphénoliques des organes d’un arbre forestier. Le Cahier des Techniques de l'NRA, Numérospécial 2006: 79-82.
Bruneton J. 1999. Pharmacognosy. Phytochemistry. Medicinal plants (second ed.). Lavoisier Publishing, Paris.
Cisse NAA. 2014. Etude sur l’utilisation des engrais biologiques dans l’agriculture au sud-Benin: Cas du produit AGRO BIO. Mémoire de master en ingénierie de l’eau et l’environnement.
Crouch IJ, Van Staden J. 1993. Commercial seaweed products as biostimulants in horticulture. J Home Consum Hortic 1 (1): 19-76. DOI: 10.1300/J280v01n01_03.
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28 (3): 350-356. DOI: 10.1021/ac60111a017.
Dumont B, Fortun-Lamothe L, Jouven M, Thomas M, Tichit M. 2013. Prospects from agroecology and industrial ecology for animal production in the 21st century. Animal 7 (6): 1028-1043. DOI: 10.1017/S1751731112002418.
Durand N, Briand X, Meyer C. 2003. The effect of marine bioactive substances (N PRO) and exogenous cytokinins on nitrate reductase activity in Arabidopsis thaliana. Physiol Plant 119 (4): 489-493. DOI: 10.1046/j.1399-3054.2003.00207.x.
Fan D, Hodges M, Zhang J, Kirby CW, Ji X, Locke SJ, Critchley AT, Prithiviraj B. 2011. Commercial extract ofthe brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem 124: 195-202. DOI: 10.1016/j.foodchem.2010.06.008.
Frolund B, Griebe T, Nielsen PH. 1995. Enzymatic activity in the activated-sludge floc matrix. Appl Microbiol Biotechnol 43 (4): 755-761. DOI: 10.1007/BF00164784.
Ghoul M, Minet J, Bernard T, Dupray E, Cormier M. 1995. Marine macroalgae as a source for osmoprotection for Escherichia coli. Microb Ecol 30 (2): 171-181. DOI: 10.1007/BF00172572.
Harnafi H, el Houda Bouanani N, Aziz M, Caid HS, Ghalim N, Amrani S. 2007. The hypolipidaemic activity of aqueous Erica multiflora flowers extract in Triton WR-1339 induced hyperlipidaemic rats: a comparison with fenofibrate. J Ethnopharmacol 109 (1): 156-160. DOI: 10.1016/j.jep.2006.09.017.
Hong DD, Hien HM, Son PN. 2007. Seaweeds from Vietnam used for functional food, medicine and biofertilizer. J Appl Phycol 19 (6): 817-826. DOI: 10.1007/s10811-007-9228-x.
Jay M, Gonnet JF, Wollenweber E, Voirin B. 1975. Sur l’analyse qualitative des aglycones flavoniques dans une optique chimiotaxinomique. Phytochemistry 14 (7): 1605-1612. DOI: 10.1016/0031-9422(75)85359-3.
Jimenez-Escrig A, Gomez-Ordonez E, Rupérez P. 2012. Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J Appl Phycol 24 (5): 1123-1132. DOI: 10.1007/s10811-011-9742-8.
Khan W, Rayirath UP, Subramanian S, Jithesh MN, Rayorath P, Hodges DM, Critchley AT, Craigie JS, Norrie J, Prithiviraj B. 2009. Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul 28 (4): 386-399. DOI: 10.1007/s00344-009-9103-x.
Kindleysides S, Quek SY, Miller MR. 2012. Inhibition of fish oil oxidation and the radical scavenging activity of New Zealand seaweed extracts. Food Chem 133 (4): 1624-1631. DOI: 10.1016/j.foodchem.2012.02.068.
Kumari R, Kaur I, Bhatnagar A. 2011. Effect of aqueous extract of Sargassum johnstonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J Appl Phycol 23 (3): 623-633. DOI: 10.1007/s10811-011-9651-x.
Levine A, Tenhaken R, Dixon R, Lamb CJ. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583-593. DOI: 10.1016/0092-8674(94)90544-4.
Lichtenthaler HK. 1987. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol 148: 350-382. DOI: 10.1016/0076-6879(87)48036-1.
Lingakumar K, Jeyaprakash R, Manimuthu C, Haribaskar A. 2004. Influence of Sargassum sp. crude extract on vegetative growth and biochemical characteristics in Zea mays and Phaseolus mungo. Seaweed Res Util 26 (1): 155-160.
Lola-Luz T, Hennequart F, Gaffney M. 2014. Effect on health promoting phytochemicals following seaweed application, in potato and onion crops grown under a low input agricultural system. Sci Hortic 170: 224-227. DOI: 10.1016/j.scienta.2014.03.022.
Loo A, Jain K, Darah I. 2008. Antioxidant activity of compounds isolated from the pyroligneous acid, Rhizophora apiculata. Food Chem 107 (3): 1151-1160. DOI: 10.1016/j.foodchem.2007.09.044.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193 (1): 265-275. DOI: 10.1016/S0021-9258(19)52451-6.
Makkar HP. 2003. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual. Springer, Dordrecht. DOI: 10.1007/978-94-017-0273-7.
Mills L. 2012. Reap Benefits of Container Gardening. Las Vegas Rev J. https://www.reviewjournal.com/life/reap-benefits-of-container-gardening/
Möller M, Smith ML. 1998. The significance of the mineral component of seaweed suspensions on lettuce (Lactuca sativa L.) seedling growth. J Plant Physiol 153 (5-6): 658-663. DOI: 10.1016/S0176-1617(98)80217-4.
Naidu BP, Jones GP, Paleg LG, Poljakoff-Mayber A. 1987. Proline analogues in Melaleuca species: Response of Melaleuca lanceolata and M. uncinata to water stress and salinity. Funct Plant Biol 14 (6): 669-677. DOI: 10.1071/PP9870669.
Neu R. 1956. A new reagent for differentiating and determining flavones on paper chromatograms. Naturwissenschaften 43 (82): 10.1007. DOI: 10.1007/BF00631858.
Osentowski J. 2015. The Forest Garden Greenhouse: How to Design and Manage an Indoor Permaculture Oasis. Chelsea Green Publishing, Chelsea, Vermont, USA.
Rolland F, Moore B, Sheen J. 2002. Sugar sensing and signaling in plants. Plant Cell 14 (Suppl 1): S185-S205. DOI: 10.1105/tpc.010455.
Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299: 152-178. DOI: 10.1016/S0076-6879(99)99017-1.
Stirk W, Arthur G, Lourens A, Novak O, Strnad M, Van Staden J. 2004. Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J Appl Phycol 16 (1): 31-39. DOI: 10.1023/B:JAPH.0000019057.45363.f5.
Whapham C, Blunden G, Jenkins T, Hankins S. 1993. Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. J Appl Phycol 5 (2): 231-234. DOI: 10.1007/BF00004023.
Zodape S, Mukhopadhyay S, Eswaran K, Reddy M, Chikara J. 2010. Enhanced yield and nutritional quality in green gram (Phaseolus radiata L) treated with seaweed (Kappaphycus alvarezii) extract. J Sci Ind Res 69: 468-471.