Gallic acid content in sapodilla fruit and seed (Manilkara zapota) and the correlation with germination control in recalcitrant seed
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Putri KF, Solichatun, Pitoyo A. 2021. Gallic acid content in sapodilla fruit and seed (Manilkara zapota) and the correlation with germination control in recalcitrant seed. Cell Biol Dev 5: 7-16. Sawo or sapodilla (Manilkara zapota (L.) P. Royen) is a tropical fruit with many benefits. Sapodilla seed is classified as a recalcitrant but has a low storage capacity. The storability of seeds is influenced by moisture content and accumulation of germination inhibitor compounds present in the seeds. One of the inhibitor compounds is gallic acid. This study aims to determine the content of gallic acid in sapodilla fruit and seeds and its relation to the control of seed germination. There were two parts to the research; the first was to assess the level of gallic acid at different stages of sapodilla fruit development. The second part examined the effect of sapodilla seeds' ripening and storing period on gallic acid content and seed viability. The data were taken from the morphological characteristics of sapodilla fruit and seeds during the development period. The preparation of seed anatomy, measurement of seed moisture content, tetrazolium test, germination test, and analysis of gallic acid content in sapodilla fruit and seeds were also carried out. The content of gallic acid was measured using UV-vis spectrophotometry. Data were analyzed with the One Way ANOVA test, and if there was a significant difference, the DMRT test (Duncan Multiple Range Test) was continued with a test level of 5%. The Independent Sample T-Test analyzed data from seed germination and viability tests. This research revealed that the fruit parts, seed coats, cotyledons, and sapodilla seed embryos all contain gallic acid inhibitor compounds. The highest gallic acid content in sapodilla seeds was in the fruit, while the lowest was in the cotyledons and embryos. The gallic acid content in sapodilla fruit and seeds decreased during the development process and storage treatment. The seed storage treatment decreased the germination percentage of sapodilla seeds. That indicates that gallic acid plays a role in controlling sapodilla seed germination.
2017-01-01
##plugins.themes.bootstrap3.article.details##
Borisjuk, L., Rolletscheck, H., Wobus, U., and Weber, H. 2003. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds. Journal of Experimental Botany 54(382):503-512.
Chanda, S.V. and K.V. Nagani. 2010. Antioxidant Capacity of Manilkara zapota L. Leaves Extracts Evaluated by Four in vitro Methods. Nature and Science 8(10): 260-266.
Chaovanalikit, A. and R. E. Wrolstad. 2004. Total Anthocyanins and Total Phenolics of Fresh and Processed Cheries and Their Antioxydant Properties. JFS : Food Chem. And Technol 69(1): 67-72.
Chin, H.F., B. Krishnapillay, and P.C. Standwood. 1989. Seed Moisture. Crop Science Society of Amerika, USA.
Debeaujon, I., Leon-Kloosterziel, K.M., and Koornneef, M. 2000. Influence of Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiol. 122: 403-413
Farnsworth, W. 2000. The Ecology and Phisiology of Viviparous and Recalsitrant Seeds. Annu. Rev. Ecil. Syst. 31(1) : 107- 138.
Fu, J. R., Q.H. Xia and Tang, L. F. 1993. Effect of Dessication on Excised Embryonic Axes of Three Recalsitant Seed and Studies on Cryopreservation. Seed Sci. Technol. 21 : 85-95.
Gong, D., S. Cao, T. Sheng, J. Shao, C. Song, F. We, W. Chen, and Z. Yang. 2015. Effect og blue light on ethylene biosynthsis, signaling and fruit ripening in postharvest peaches. Scientia Horticulturae 1(1): 1-8.
Hanna, P.J. 1984. Anatomical features of the seed coat of Acacia kempeana (Mueller) which relate to increased germination rate induced by heat treatment. New Phytol. 96: 23-29
Hasanah, M. dan D. Rusimin. 2006. Teknologi Pengelolaan Biji Beberapa Tanaman Obat di Indonesia. Jurnal Litbang Pertanian 25(2):68-73.
Hong, T.D., S. Linington dan R.H. Ellis. 1998. Compendium of information on seed storage behavior. Royal Botanic Gardens. Vol. I A—H : Kew : xvii+400 hlm.
Hossain, M., D.K. Paul, and M.A. Rahim. 2015. Phisio-chemical Changes During Growth and Development of Sapota Fruit (Manilkara achras Mill.). Journal of Agricultural and Natural Sciences 3(1) : 58-68.
Inacio, M.C., Moraes, R.M., Mendoca, P.C., Morel, L.J.F., Franca, S.C., Bertoni, B.W., and Pereira, A.M.S. 2013. Phenolic compounds influence seed dormancy of Palicourea rigida H.B.K. (Rubiaceae), a medicinal plant of the Brazilian Savannah. American Journal of Plant Sciences 4: 129-133.
Kamil, J. 1982. Teknologi Biji I. PT Angkasa, Bandung.
King M.W. and Roberts E.H. 1979. The Storage of Recalsitrant Seeds. Achievements and Possible Approaches. International Board for Plant Genetic Resources, Rome.
Kumar, R.S., K. Sureshkumar, and R. Velraj. 2015. Optimization of Biodiesel Production from Manilkara zapota (L.) Seed Oil Using Taguchi Method. Fuel 140 : 90-96.
Kusmiyati, S. Mubarok, W. Sutari, Farida, Y. Hadiwijaya, dan I. E. Putri. 2017. Kualitas Sawo (Achras zapota L.) Kultivar Sukatali selama Penyimpanan. Jurnal Agrikultura 28(2): 90-94.
Morton, J. F. 1987. Fruits of Warm Climates. Miami, USA.
Ningsih, I. Y. 2016. Modul Botani Farmasi : Anatomi dan Morfologi Buah dan Biji. Fakultas Farmasi Universitas Jember.
Pammenter, N. W. and P. Berjak. 2014. Physiology of Desiccation-Sensitive (Recalsitrant) Seeds and The Implication for Cryopreservation. Int. J. Plant. Scri. 175(1): 21-28.
Rastegar, S. 2015. Physical, Biochemical and Mineral Evaluation of Sapota Fruits During Growth, Development and Ripening. Agricultural Communications 3(3) :14-19.
Shivashankar, S., J. Joshi, and M. Sumathi. 2015. The Role of Seed Viability in The Development of Corky Tissue in Sapota (Manilkara achras) fruit in India. Journal of Holticultural Science and Biotechnology 88(5): 671-677.
Shui, G., S. P. Wong, and L.P. Leong. 2004. Characterization of Antioxidant and Change of Antioxidant Level during Storage of Manilkara zapota L. J. Agric. Food Chem 52 : 7834: 8841.
Soerodikosoemo, W. 1987. Mikroteknik Tumbuhan. Lab. Embriologi dan Mikroteknik Tumbuhan Fakultas Biologi Universitas Gajah Mada, Yogyakarta.
Srivastava, A.K., P. Kashyap, V.S. Meena, N. Verma, and S.P Singh. 2017. Sapota [(Manilkara achras (Mill.) Fosberg (Syn : Achras zapota L.)]. Underutilized Fruit Crops : Importance and Cultivation 1159-1194
Subantoro, R. dan R. Prabowo. 2013. Pengkajian Viabilitas Biji dengan Tetrazolium Test Pada Jagung dan Kedelai. Jurnal Ilmu Ilmu Pertanian 9(2): 1-8.
Sukarman dan D. Rusmin. 2000. Penanganan Biji Rekalsitran. Buletin Plasma Nutfah 6(1): 7 – 15.
Sutopo, L. 1985. Teknologi Biji. Jakarta : Penerbit CV Rajawali.
Sutopo, L. 1998. Teknologi Benih. Jakarta : Raja Grafindo Persada.
Tjitrosomo, S. S. 1983. Botani Umum. Bandung : Angkasa.
Trubus Online. 2017. Lomba Buah Unggul Nusantara. http://www.trubus-online.co.id/lomba-buah-unggul-nusantara-2017/. [13 Oktober 2017].
Yukiko, I., K. Yasuo, and T. Minoru. 2001. Effect of Phenolic Compounds on Seed Germination of Shirakamba Birch, Betula platyphylla var. japonica. Eurasian J. For. Res. 2: 17-25.