Prevalence of b-lactamase produced in Klebsiella pneumoniae and Enterobacter cloacae isolated from gingivitis in Al-Najaf Province, Iraq

##plugins.themes.bootstrap3.article.main##

ZAHRAA YOSIF MOTAWEQ

Abstract

Abstract. Motaweq ZY. 2022. Prevalence of b-lactamase produced in Klebsiella pneumoniae and Enterobacter cloacae isolated from gingivitis in Al-Najaf Province, Iraq. Nusantara Bioscience 14: 78-83. This study provides phenotypic and genotypic ?-lactamase formation data on 26 isolates of Klebsiella pneumoniae and Enterobacter cloacae isolated from patients with gingivitis checked at Al-Kafeel clinic and private clinic in Al-Najaf Province-Iraq during the period from September 2020 to February 2021. In this study, some were detected by traditional phenotypic methods, while others were detected by phenotypic and then genotypically by using the monoplex-PCR technique. The results revealed that out of 14 b-lactam resistance K. pneumoniae isolates, eight isolates (57.1%) gave positive results with the direct capillary tubes method, while 12 b-lactam resistance E. cloacae gave 6 (50%) positive results. This result indicated that enzymatic resistance was prevalent among isolates. Furthermore, the results showed that most isolates were ESBL producers according to initial and confirmatory methods. Molecular amplification of the b-lactamase enzyme blaSHV gene was detected in 8 (57.1%) and 5 (41.6%) for K. pneumoniae and E. cloacae, respectively. While all 100% of K. pneumoniae and E. cloacae isolates gave negative results for the blaGES gene. This study aimed to investigate the b-lactamase formation and detection of blaSHV and blaGES genes in K. pneumoniae and E. cloacae isolated from gingivitis diseases.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Al-Charrakh AH, Al-Khafaji JK, Al-Rubaye RH. 2011. Prevalence of ?-hemolytic groups C and F streptococci in patients with acute pharyngitis. North Am J Med Sci 3 (3): 129. DOI: 10.4297/najms.2011.3129.
Aljanaby AAJ, Alhasani AHA. 2016. Virulence factors and antibiotic susceptibility patterns of multidrug resistance Klebsiella pneumoniae isolated from different clinical infections. Afr J Microbiol Res 10 (22): 829-843. DOI: 10.5897/AJMR2016.8051.
Al-Sehlawi ZSR. 2012. Occurrence and Characterization of AmpC Beta-Lactamases in Klebsiella pneumoniae Isolated from Najaf Hospitals. [Ph.D. Thesis]. Faculty of Science, University of Babylon, Iraq.
Bartlett JM, Stirling D. 2003. PCR Protocols (Vol. 226). Humana Press, Totowa, New Jersey. DOI: 10.1385/1592593844.
Batchoun RG, Swedan SF, Shurman AM. 2009. Extended spectrum ?-lactamases among Gram-negative bacterial isolates from clinical specimens in three major hospitals in Northern Jordan. Intl J Microbiol Res 2009: 513874. DOI: 10.1155/2009/513874.
Bush K, Fisher JF. 2011. Epidemiological expansion, structural studies, and clinical challenges of new beta-lactamases from Gram-negative bacteria. Ann Rev Microbiol 65: 455-478. DOI: 10.1146/annurev-micro-090110-102911.
Bush K, Jacoby GA. 2010. Updated functional classification of ?-lactamases. Antimicrob Agents Chemother 54: 969-976. DOI: 10.1128/AAC.01009-09.
Bush K. 2010. Bench-to-bedside review: The role of beta-lactamases in antibiotic-resistant Gram-negative infections. Crit Care 14: 224. DOI: 10.1186/cc8892.
Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, Livermore DM, Miriagou V, Naas T, Rossolini GM, Samuelsen Ø, Seifert H, Woodford N, Nordmann P, European Network on Carbapenemases. 2012. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18: 413-431. DOI: 10.1111/j.1469-0691.2012.03821.x.
Chong Y, Ito Y, Kamimura T. 2011. Genetic evolution and clinical impact in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect Genet Evol 11: 1499-504. DOI: 10.1016/j.meegid.2011.06.001.
Clinical and Laboratory Standards Institute (CLSI). 2018. Performance Standards for Antimicrobial Susceptibility Testing. M100-S20. CLSI, Wayne, PA, USA. DOI: 10.1016/j.ijantimicag.2004.06.001.
Colodner R, Raz R, Chazan B. 2004. Susceptibility pattern of ESBL- producing bacteria isolated from inpatients to five antimi-crobial drugs in a community hospital in Northern Israel. Intl J Antimicrob Agents 24: 409-410.
Coque TM, Baquero F, Canton R. 2008. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe. Euro Surveill 13 (47): 19044. DOI: 10.2807/ese.13.47.19044-en.
Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. 2010. Development of a set of multiplex PCR assays for thedetection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother 65: 490-495. DOI: 10.1093/jac/dkp498.
Davin-Regli A, Pagès JM. 2015. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Front Microbiol 18: 392. DOI: 10.3389/fmicb.2015.00392.
Dhillon RHP, Clark J. 2012. ESBLs: A clear and present danger? Crit Care Res Pract 2012: 625170. DOI: 10.1155/2012/625170.
Ensor VM, Jamal W, Rotimi VO, Evans JT, Hawkey PM. 2009. Predominance of CTX-M-15 extended spectrum beta-lactamases in diverse Escherichia coli and Klebsiella pneumoniae from hospital and community patients in Kuwait. Intl J Antimicrob Agents 33: 487-489. DOI: 10.1016/j.ijantimicag.2008.10.011.
Fernandes AT, Filho NR, Barroso EDAR. 2000. Conceito, cadeia epidemiológica das infecçöes hospitalares e avaliaçäo custo-benefício das medidas de controle. In Infecçäo hospitalar e suas interfaces na área da saúde. Atheneu, Säo Paulo.
Ferreira S, Toleman M, Ramalheira E, Da Silva GJ, Walsh T, Mendo S. 2010. First description of Klebsiella pneumoniae clinical isolates carrying both qnrA and qnrB genes in Portugal. Intl J Antimic Agents 35 (6): 584-586. DOI: 10.1016/j.ijantimicag.2010.01.019.
Foley JM, Perret CJ. 1962. Screening bacterial colonies for penicillinase production. Nature 195 (4838): 287-288. DOI: 10.1038/195287a0.
Gamboa F, García DA, Acosta A, Mizrahi D, Paz A, Martínez D, Abba M. 2013. Presence and antimicrobial profile of Gram-negative facultative anaerobe rods in patients with chronic periodontitis and gingivitis. Acta Odontológica Latinoamericana 26 (1): 24-30.
Ghasemi Y, Archin T, Kargar M, Mohkam M. 2013. A simple multiplex PCR for assessing prevalence of extended-spectrum ?-lactamases producing Klebsiella pneumoniae in intensive care units of a referral hospital in Shiraz, Iran. Asian Pac J Trop Med 6: 703-708. DOI: 10.1016/S1995-7645(13)60122-4.
Guido F, Pascale F. 2005. Performance of the new VITEK 2 GP card for identification of medically relevant Gram-positive Cocci in a Routine Clinical Laboratory. J Clin Microbiol 43 (1): 84-88. DOI: 10.1128/JCM.43.1.84-88.2005.
Hadi SH. 2018. Experimental transmission of Enterobacter cloacae from fishes to wounds of skin by using balb/c mice. J Pure Appl Microbiol 12 (4): 2117-2121. DOI: 10.22207/JPAM.12.4.49.
Jacoby GA, Bush K. 2009. Amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant ?-lactamases. Online at http://www.lahey.org/studies.
Kitchel B, Rasheed JK, Patel JB, Srinivasan A, Navon-Venezia S, Carmeli Y, Brolund A, Giske CG. 2009. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States: clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother 53: 3365-3370. DOI: 10.1128/AAC.00126-09.
Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC. 1997. Diagnostic Microbiology. The Nonfermentative Gram-Negative Bacilli. Lippincott-Raven Publisher, Philedelphia.
Lafaurie M, Porcher R, Donay JL, Touratier S, Molina JM. 2012. Reduction of fluoroquinolone use is associated with a decrease in methicillin-resistant Staphylococcus aureus and fluoroquinolone-resistant Pseudomonas aeruginosa isolation rates: A 10 year study. J Antimic Chemother 67 (4): 1010-1015. DOI: 10.1093/jac/dkr555.
Ma L, Chang FY, Fung CP, Chen TL, Lin JC, Lu PL, Huang LY, Chang JC, Siu LK. 2005. Variety of TEM-, SHV-, and CTX-M-type ?-lactamases present in recent clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae from Taiwan. Microbial Drug Resist 11 (1): 31-39. DOI: 10.1089/mdr.2005.11.31.
MacFaddin JF. 2000. Biochemical Tests for Identification of Medical Bacteria. 3rd Edition. Lippincott Williams and Wilkins, USA.
Mainiatis T, Frisch EF, Sambrook J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NewYork.
Mishra A, Ma CQ, Bauerle P. 2009. Functional oligothiophenes: Molecular design for multidimensional nanoarchitectures and their applications. Chem Rev 109 (3): 1141-1276. DOI: 10.1021/cr8004229.
Nordmann P, Cuzon G, Naas T. 2009. The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9 (4): 228-236. DOI: 10.1016/S1473-3099(09)70054-4.
Rocha CGBB, Reis C, Pimenta FC. 2006. Contagem e identificação de microrganismos na saliva de portadores do vírus da imunodeficência humana antes e após higienização e bochecho com anti-sépticos. Revista de Patologia Tropical 35 (2): 125-133. DOI: 10.5216/rpt.v35i2.1901.
Salabi El A, Walsh TR, Chouchani C. 2013. Extended spectrum ?-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Crit Rev Microbiol 39 (2): 113-122. DOI: 10.3109/1040841X.2012.691870.
Shah RK, Ni ZH, Sun XY, Wang GQ, Li F. 2017. The determination and correlation of various virulence genes, ESBL, serum bactericidal effect and biofilm formation of clinical isolated classical Klebsiella pneumoniae and hypervirulent Klebsiella pneumoniae from respiratory tract infected patients. Polish J Microbiol 66 (4): 501-508. DOI: 10.5604/01.3001.0010.7042.
Shakib P, Kalani MT, Ramazanzadeh R, Ahmadi A, Rouhi S. 2018. Molecular detection of virulence genes in Klebsiella Pneumoniae clinical isolates from Kurdistan Province, Iran. Biomed Res Ther 5 (8): 2581-2589. DOI: 10.15419/bmrat.v5i8.467.
Steward CD, Rasheed JK, Hubert SK, Biddle JW, Raney PM, Anderson GJ, Williams PP, Brittain KL, Oliver A, McGowan JE, Tonover FC. 2001. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the national committee for clinical laboratory standards extended-spectrum ß-lactamase detection methods. J Clin Microbiol 165 (2): 353-356. DOI: 10.1128/JCM.39.8.2864-2872.2001.
Szabó D, Bonomo RA, Silveira F, Pasculle AW, Baxter C, Linden PK, Paterson DL. 2005. SHV-type extended-spectrum beta-lactamase production is associated with reduced cefepime susceptibility in Enterobacter cloacae. J Clin Microbiol 43 (10): 5058-5064. DOI: 10.1128/JCM.43.10.5058-5064.2005.
Thomson KS. 2010. Extended-spectrum-lactamase, AmpC and carbapenemase issues. J Clin Microbiol 48: 1019-1125. DOI: 10.1128/JCM.00219-10.
Williams SA, Slatko BE, McCarrey JR. 2007. Laboratory Investigations In Molecular Biology. Jones & Bartlett Publishers, Inc., Sudbury, MA, United States.
Woodford N, Tierno PM, Young K, Tysall L, Palepou MFI, Ward E, Painter RE, Suber DF, Shungu D, Silver LL, Inglima K, Kornblum J, Livermore DM. 2004. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A ?- lactamase, KPC-3, in a New York Medical Center. Antimicrob Agents Chemother 48: 4793-4799. DOI: 10.1128/AAC.48.12.4793-4799.2004.
Yang D, Zhang Z. 2008. Biofilm-forming Klebsiella pneumoniae strains have greater likelihood of producing extended-spectrum ?-lactamases. J Hosp Infect 68 (4): 369-371. DOI: 10.1016/j.jhin.2008.02.001.