Short Communication: Antioxidant activity of ethanol extract of Chlorella sorokiniana cultured in tofu wastewater

##plugins.themes.bootstrap3.article.main##

HAMZA MURSANDI
DEVY SUSANTY
LANY NURHAYATI
ADE AYU OKSARI

Abstract

Abstract. Mursandi H, Susanty D, Nurhayati L, Okasari AA. 2022. Short Communication: Antioxidant activity of ethanol extract of Chlorella sorokiniana cultured in tofu wastewater. Nusantara Bioscience 14: 155-159. Microalgae are microorganisms that grow quickly and produce secondary metabolites with antioxidant activity. Antioxidants of microalgae can be utilized in various aspects such as cosmetics, pharmaceuticals, supplements, and feed. Microalgae utilization will be more profitable if the microalgae can be cultured on waste media. This study aims to determine the concentration of a suitable medium for the growth of Chlorella sorokiniana Shihira & R.W.Krauss, total flavonoids, total phenolics, and the potential of ethanolic extract of C. sorokiniana as an antioxidant. This study cultured the microalgae C. sorokiniana on tofu liquid waste media at various concentrations (15, 20, 25, and 30%). The growth of C. sorokiniana on the media was observed using a spectrophotometer at 680 nm wavelength. C. sorokiniana biomass was collected on the 7th day. The biomass was extracted using ethanol as a solvent. Phytochemical analysis was performed using the standard method, Total phenolic content, total flavonoid content, and antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) were conducted to determine the IC50 value. The results showed that the best growth of C. sorokiniana was on TLW media at a concentration of 30%. The ethanolic extract of C. sorokiniana showed the presence of alkaloids, flavonoids, steroids, tannins, and saponins. The total phenolic content in the ethanolic extract of C. sorokiniana was 18.39 ± 0.29 mgGAE/g, and the total flavonoid content was 31.93 ± 5,60 mgQE/g. The IC50 of the ethanolic extract of C. sorokiniana was 288.95 mg/L, which shows this extract has a potent antioxidant.

2019-01-01

##plugins.themes.bootstrap3.article.details##

References
Akhlaghi M, Bandy B. 2009. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 46 (3): 309-317. DOI: 10.1016/j.yjmcc.2008.12.003.
Atmani D, Chaher N, Berboucha M, Ayouni K, Lounis H, Boudaoud H, Debbache N, Atmani D. 2009. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem 112 (2): 303-309. DOI: 10.1016/j.foodchem.2008.05.077.
Azaman SN, Nagao N, Yusoff FM, Tan SW, Yeap SK. 2017. A comparison of the morphological and biochemical characteristics of Chlorella sorokiniana and Chlorella zofingiensis cultured under photoautotrophic and mixotrophic conditions. Peer J 5 (1): e3473. DOI: 10.7717/peerj.3473.
Bariyyah SK, Hanapi A, Fasya AG, Abidin M. 2013. Uji aktivitas antioksidan terhadap DPPH dan identifikasi golongan senyawa aktif ekstrak kasar mikroalga Chlorella sp. hasil kultivasi dalam medium ekstrak tauge. Alchemy 2 (3): 195-204. DOI: 10.18860/al.v0i0.2890. [Indonesian]
Cerón MC, García-Malea MC, Rivas J, Acien FG, Fernandez JM, Del Río E, Guerrero MG, Molina E. 2007. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl Microbiol Biotechnol 74 (5): 1112-1119. DOI: 10.1007/s00253-006-0743-5.
Chen CY, Kuo EW, Nagarajan D, Ho SH, Dong C, Di Lee, DJ, Chang JS. 2020. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresour Technol 302: 122814. DOI: 10.1016/j.biortech.2020.122814.
Chrismadha T, Panggabean L, Mardiati Y. 2006. Pengaruh konsentrasi nitrogen dan fosfor terhadap pertumbuhan, kandungan protein, karbohidrat dan fikosianin pada kultur Spirulina fusiformis. J Berita Biologi 8 (3): 163-169. [Indonesian]
Cotta SR, da Mota FF, Tupinambá G, Ishida K, Rozental S, e Silva DO, da Silva AJR, Bizzo HR, Alviano DS, Alviano CS, Seldin L. 2012. Antimicrobial activity of Paenibacillus kribbensis POC 115 against the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol 28 (3): 953-962. DOI: 10.1007/s11274-011-0893-1.
de Carvalho EM, Ramos MM, Ansilago M, Mussury RM, Velasques J. 2020. Enhancing secondary metabolites in Chlorella sorokiniana using alternative medium with vinasse. Preprints 2020: 2020080541. DOI: 10.20944/preprints202008.0541.v1.
de-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y. 2008. Chlorella sorokiniana UTEX 2805 a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99 (11): 4980-4989. DOI: 10.1016/j.biortech.2007.09.065.
Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L. 2012. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Psychol 24 (6): 1477-1486. DOI: 10.1007/s10811-012-9804-6.
Hadiyanto, Azim M. 2012. Mikroalga Sumber Pangan dan Energi Masa Depan. Edisi Pertama. UPT Universitas Diponegoro Press, Semarang. [Indonesian]
Haneda RN. 2015. Biochemical composition of Chlorella sorokiniana grown in a novel design of hybrid photobioreactor. J Microbial Biochemical Technol 07 (02): 76-82. DOI: 10.4172/1948-5948.1000185.
Harbone JB. 1996. Metode Fitokmia Penuntun Cara Modern Menganalisis Tumbuhan. Institut Teknologi Bandung, Bandung. [Indonesian]
Herrero M, Jaime L, Martín-Álvarez PJ, Cifuentes A, Ibáñez E. 2006. Optimization of the extraction of antioxidants from Dunaliella salina microalgae by pressurized liquids. J Agric Food Chem 54 (15): 5597-5603. DOI: 10.1021/jf060546q.
Intaglietta M. 1977. Measurement of flow dynamics in the microcirculation. Med Instrum 11 (3): 149-52.
Istirokhatun T, Aulia M, Utomo S. 2017. Potensi Chlorella sp. untuk menyisihkan COD dan nitrat dalam limbah cair tahu. J Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan 14 (2): 88. DOI: 10.14710/presipitasi.v14i2.88-96. [Indonesian]
Janssen M, Kuijpers TC, Veldhoen B, Ternbach MB, Tramper J, Mur LR, Wijferls RH. 1999. Spesific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles; 13-87s. J Biotechnol 70: 323-333. DOI: 10.1016/S0168-1656(99)00084-X.
Jerez-Martel I, García-Poza S, Rodríguez-Martel G, Rico M, Afonso-Olivares C, Gómez-Pinchetti JL. 2017. Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual 2017 (4): 1-8. DOI: 10.1155/2017/2924508.
Ji Y, Sherrell RM. 2008. Differential effects of phosphorus limitation on cellular metals in Chlorella and Microcystis. Limnol Oceanogr 53 (5): 1790-1804. DOI: 10.4319/lo.2008.53.5.1790.
Jun M, Fu HY, Hong J, Wan X, Yang CS, Ho CT. 2003. Comparison of antioxidant activities of isoflavones from kudzu root (Pueraria lobata Ohwi). J Food Sci 68 (6): 2117-2122. DOI: 10.1111/j.1365-2621.2003.tb07029.x.
Komarawidjaja W. 2011. Industri pengolahan rumput laut sebagai media kultur mikroalga Chlorella sp. Teknologi Lingkungan 12 (3): 241-250. DOI: 10.29122/jtl.v12i3.1232. [Indonesian]
Kusumah RR. 2019. Total Flavonoid dan Aktivitas Antioksidan dari Ekstrak Metanol Buah Bisbul (Dyospyros discolor). [Skripsi]. Universitas Nusa Bangsa. Bogor. [Indonesian]
Lai PF. 2017. Optimizing extraction process and characterization of antioxidant ingredients from Chlorella sorokiniana. MOJ Food Process Technol 5 (1): 202-210. DOI: 10.15406/mojfpt.2017.05.00114.
Li Y, Lian S, Tong D, Song R, Yang W, Fan Y, Qing R, Hu C. 2011. One-step production ofbiodiesel from Nannochloropsis sp. on solid base Mg-Zr catalyst. Appl Energ 88: 3313-3317. DOI: 10.1016/j.apenergy.2010.12.057.
Li Y, Zhao ZK, Bai F. 2007. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb Technol 41: 312-317. DOI: 10.1016/j.enzmictec.2007.02.008.
Lin HY, Kuo YH, Lin YL, Chiang W. 2009. Antioxidative effect and active components from leaves of lotus (Nelumbo nucifera). J Agric Food Chem 57 (15): 6623-6629. DOI: 10.1021/jf900950z.
Lizzul AM, Lekuona-Amundarain A, Purton S, Campos LC. 2018. Characterization of Chlorella sorokiniana, UTEX 1230. Biology 7 (2): 1-12. DOI: 10.3390/biology7020025.
Makareviciene PDV, Andrulevi?i?t? V, Skorupskait? V, Kasperovi?ien? J. 2011. Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potential biofuel feedstock. Environ Res Eng Manag 57 (3): 21-27.
Matsukawa R, Hotta M, Masuda Y, Chihara M, Karube I. 2000. Antioxidants from carbon dioxide fixing Chlorella sorokiniana. J Appl Psychol 12 (3-5): 263-267. DOI: 10.1023/a:1008141414115.
Munir F, Hariyati R, Wiryani E. 2017. Pengaruh limbah cair tahu terhadap pertumbuhan populasi Chlorella pyrenoidosa H. Chick dalam skala laboratorium. J Biologi 6 (2): 84-92. [Indonesian]
Nakiboglu M, Urek RO, Kayali HA, Tarhan L. 2007. Antioxidant capacities of endemic Sideritis sipylea and Origanum sipyleum from Turkey. Food Chem 104 (2): 630-635. DOI: 10.1016/j.foodchem.2006.12.012.
Napitupulu HP. 2019. Pengaruh Perbedaan Fotoperiode Pada Kultur Chlorella sp. dengan Sistem Fotobioreaktor Kuntinu. [Thesis]. Universitas Riau, Pekanbaru. [Indonesian]
Nurjana, Abdullah A, Apriandi A. 2011. Aktivitas antioksidan dan komponen bioaktif keong ipong-ipong (Fasciolaria salmo) antioxidant activity and bioactive compound of ipong-ipong snail (Fasciolaria salmo). J Pengolahan Hasil Perikanan Indonesia 14 (1): 22-29. [Indonesian]
Olasehinde TA, Odjadjare EC, Mabinya LV, Olaniran AO, Okoh AI. 2019. Chlorella sorokiniana and Chlorella minutissima exhibit antioxidant potentials, inhibit cholinesterases and modulate disaggregation of ?- amyloid fibrils. Electron J Biotechnol 40: 1-9. DOI: 10.1016/j.ejbt.2019.03.008.
Ramanna L, Guldhe A, Rawat I, Bux F. 2014. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour Technol 168: 127-135. DOI: 10.1016/j.biortech.2014.03.064.
Rao AR, Sarada R, Baskaran V, Ravishankar GA. 2006. Antioxidant activity of Botryococcus braunii extract elucidated in vitro models. J Agric Food Chem 54 (13): 4593-4599. DOI: 10.1021/jf060799j.
Rini IS. 2012. Pengaruh Konsentrasi Limbah Cair Tahu Terhadap Pertumbuhan dan Kadar Lipid Chlorella sp. [Skripsi] Universitas Islam Negeri Maulana Malik Ibrahim, Malang. [Indonesian]
Susanty D, Oksari AA. 2020. Growth and secondary metabolites content of chloroform extract of Chlorella sp. and Chlorella sorokiniana cultured on chicken broiler waste media. Nusantara Biosci 12 (1): 28-32. DOI: 10.13057/nusbiosci/n120105.
Syaichurrozi I, Jayanudin Jayanudin. 2016. Kultivasi Spirulina platensis pada media bernutrisi limbah cair tahu dan sintetik. JBAT 5 (2): 68-73. DOI: 10.15294/jbat.v5i2.7398. [Indonesian]
Ukieyanna K. 2012. Aktivitas Antioksidan Kadar Fenolik dan Flavonoid Total Tumbuhan Suruhan (Peperomia pellucid L. Kunth). [Skripsi]. Institut Pertanian Bogor, Bogor. [Indonesian]
Widayat W, Hadiyanto H. 2016. Pemanfaatan limbah cair industri tahu untuk produksi biomassa mikroalga Nannochloropsis sp. sebagai bahan baku biodiesel. Reaktor 15 (4): 253. DOI: 10.14710/reaktor.15.4.253-260. [Indonesian]
Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126: 85-493. DOI: 10.1104/pp.126.2.485.
Yadavalli R, Ratnapuram H, Motamarry S, Reddy CN, Ashokkumar V, Kuppam C. 2020. Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Conversion and Biorefinery. Springer. DOI: 10.1016/j.crcon.2019.10.003.
Yusandi F. 2010. Pengaruh Nitrogen Terhadap Kandungan Essensial Biomassa Chlorella vulgaris Buitenzorg. [Hon. Thesis]. Universitas Indonesia, Jakarta. [Indonesian]