In silico comparative analysis of the complete chloroplast genome sequences in different jewel orchid species




Abstract. Nguyen MP, Trinh TH, Ngo TKA, Widiarsih S, Ho VT. 2023. In silico comparative analysis of the complete chloroplast genome sequences in different jewel orchid species. Nusantara Bioscience 15: 12-21. Jewel orchid is the common name of several orchid species which can be alike in morphological characteristics but variable in medicinal properties. As these plants are utilized to treat several diseases, their natural existence in the wild habitat is rapidly diminished. Therefore, a better understanding of the genetic information of this plant for better genetic conservation and development of these plants is necessary. In this study, a total of 18 published chloroplast genomes of 18 jewel orchid species determined by the next-generation sequencing method were retrieved from NCBI GenBank and targeted for genomic characterization and phylogenetic analyses. Different bioinformatics tools were utilized to characterize these genomes’ genomic structure, repetitive sequences, interspecific variation, divergence, and phylogenetic relationships. The obtained data revealed that the chloroplast genomes of different jewel orchid species varied in length between 151,414 (Anoectochilus formosanus MN880624.1) and 154,375 (Goodyera biflora OM314910.1). Each species contains 34-87 SSR loci which could be useful as molecular markers for further genetic diversity study of this plant. Structural variations in the expansion and contraction of inverted repeat regions were also considered. Phylogenetic analysis identified a close relationship among species belonging to the Goodyera genus, and this genus is distinctive from other genera such as AnoectochilusCystorchisDossiniaLudisia, and Macodes. The obtained results show a high potential of deeper characterizing the chloroplast genome of jewel orchids for species classification, identification, molecular breeding, and evolutionary exploration of these important herbal plants.


Abdullah, Henriquez CL, Mehmood F, Hayat A, Sammad A, Weseem S, Waheed MT, Matthews PJ, Croat TB, Poczai P, Ahmed I. 2021. Chloroplast genome evolution in the Dracunculus clade (Aroideae, Araceae). Genomics 113: 183-192. DOI: 10.1016/j.ygeno.2020.12.016.
Amiryousefi A, Hyvönen J, Poczai P. 2018. IRscope: an online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34 (17): 3030-3031. DOI: 10.1093/bioinformatics/bty220.
Behura S. 2015. Insect phylogenomics. Insect Mol Biol 24 (4): 403-411. DOI: 10.1111/imb.12174.
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: A web server for microsatellite prediction. Bioinformatics 33: 2583-2585. DOI: 10.1093/bioinformatics/btx198.
Besse P, Da Silva D, Grisoni M. 2021. Plant DNA barcoding principles and limits: A case study in the genus Vanilla. Methods Mol Biol 2222: 131-148. DOI: 10.1007/978-1-0716-0997-2_8.
Brudno M, Malde S, Poliakov A, Do CB, Couronne O, Dubchak I, Batzoglou S. 2003. Glocal alignment: Finding rearrangements during alignment. Bioinformatics 19S1: i54-i62. DOI: 10.1093/bioinformatics/btg1005.
David D, Rusdi NA, Mokhtar RAM, Faik AAM, Gansau JA. 2020. Establishment of in vitro regeneration protocol for Sabah’s jewel orchid, Macodes limii J.J. Wood & A.L. Lamb. Horticulturae 8: 155. DOI: 10.3390/horticulturae8020155.
Fay MF, Chase MW. 2009. Orchid biology: From Linnaeus via Darwin to the 21st century. Ann Bot 104: 359-364. DOI: 10.1093/aob/mcp190.
Galimberti A, Labra M, Sandionigi A, Bruno A, Mezzasalma V, De Mattia F. 2014. DNA barcoding for minor crops and food traceability. Adv Agric 2014: 832875. DOI: 10.1155/2014/831875.
Ho VT, Tran TKP, Vu TT, Widiarsih S. 2021. Comparison of matK and rbcL DNA barcodes for genetic classification of jewel orchid accessions in Vietnam. J Genet Eng Biotechnol 19: 93. DOI: 10.1186/s43141-021-00188-1.
Huang S, Ge X, Cano A, Salazar BGM, Deng Y. 2020. Comparative analysis of chloroplast genomes for five Dicliptera species (Acanthaceae): Molecular structure, phylogenetic relationships, and adaptive evolution. Peer J 8: e8450. DOI: 10.7717/peerj.8450.
Kang Y, Deng Z, Zang R, Long W. 2017. DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Sci Rep 7: 12564. DOI: 12564.10.1038/s41598-017-13057-0.
Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20 (4): 1160-1166. DOI: 10.1093/bib/bbx108.
Kumar S, Stecher G, Li M, Knyaz C, and Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35: 1547-1549. DOI: 10.1093/molbev/msy096.
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. 2001. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29 (22): 4633-4642. DOI: 10.1093/nar/29.22.4633.
Li F, Liu Y, Wang J, Xin P, Zhang J, Zhao K, Zhang M, Yun H, Ma W. 2022. Comparative analysis of chloroplast genome structure and phylogenetic relationships among six taxa within the genus Catalpa (Bignoniaceae). Front Genet 13: 845619. DOI: 10.3389/fgene.2022.845619.
Li QL, Guo JZ, Yan N, Li CC. 2016. Complete chloroplast genome sequence of cultivated Morus L. species. Genet Mol Res 15 (4): gmr15048906. DOI: 10.4238/gmr15048906.
Liu H, Ye H, Zhang N, Ma J, Wang J, Hu G, Li M, Zhao P. 2022. Comparative analyses of chloroplast genomes provide comprehensive insights into the adaptive evolution of Paphiopedilum (Orchidaceae). Horticulturae 8: 391. DOI: 10.3390/horticulturae8050391.
Liu X, Chang E, Liu J, Juang Z. 2021. Comparative analysis of the complete chloroplast genomes of six white oaks with high ecological amplitude in China. J For Res 32: 2203-2218. DOI: 10.1007/s11676-020-01288-3.
Nishimaki T, Sato K. 2019. An extension of the Kimura two-parameter model to the natural evolutionary process. J Mol Evol 87: 60-67. DOI: 10.1007/s00239-018-9885-1.
Park J, Xi H, Oh SH. 2020. Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea. Korean J Pl Taxon 50 (1): 8-16. DOI: 10.11110/kjpt.2020.50.1.8.
Raskoti BB, Ale R. 2021. DNA barcoding of medicinal orchids in Asia. Sci Rep 11: 23651. DOI: 10.1038/s41598-021-03025-0.
Roy SC, Moitra K, Sarker DD. 2016. Assessment of genetic diversity among four orchids based on ddRAD sequencing data for conservation purposes. Phyisol Mol Biol Plant 23 (1): 169-183. DOI: 10.1007/s12298-016-0401-z.
Sikdar S, Tiwari S, Thakur VV, Sapre S. 2018. An in silico approach for evaluation of rbcL and matK loci for DNA barcoding of Fabaceae family. Intl Chem Stud 6 (6): 2446-2451.
Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R and Greiner S. 2017. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45: W6-W11.
Tran TKP, Pham MH, Trinh TH, Widiarsih S, Ho VT 2022. Investigation of the genetic diversity of jewel orchid in Vietnam using RAPD and ISSR markers. Biodiversitas 23 (9): 4816-4825. DOI: 10.13057/biodiv/d230950.
Winarto B, Samijan. 2018. Axillary shoots derived from shoot tips in in vitro mass propagation of Anoectochilus formosanus Hayata. J Agric Sci 2: 121-130. DOI: 10.15159/jas.18.11.
Xu J, Liu C, Song Y and Li M. 2021. Comparative analysis of the chloroplast genome for four Pennisetum species: Molecular structure and phylogenetic relationships. Front Genet 12: 687844. DOI: 10.3389/fgene.2021.687844.
Zhang JY, Liao M, Cheng YH, Feng Y, Ju WB, Deng HN, Li X, Plenkovic-Moraj A, Xu B. 2022. Comparative chloroplast genomics of seven endangered Cypripedium species and phylogenetic relationships of Orchidaceae. Front Plant Sci 13: 911702. DOI: 10.3389/fpls.2022.911702.
Zheng S, Poczai P, Hyvonen J, Tang J, Amiryousefi A. 2020. Chloroplot: An online program for the versatile plotting of organelle genomes. Font Genet 11:576124. DOI: 10.3389/fgene.2020.576124.
Zhou J, Xie TX, Ma SH, Chen MK, Zheng QD, Ai Y. 2019. The complete chloroplast genome sequence of Goodyera foliosa (Orchidaceae). Mitochondrial DNA Part B 4 (2): 3477-3478. DOI: 10.1080/23802359.2019.1674728.